Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Oxidative stress produced through reactive oxygen species (ROS) enhancement is considered to play a key role in the development and maintenance of hypertension. In the vasculature, the most important source of ROS is the reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase enzyme. The principal stimulus of this enzyme is angiotensin II (Ang II). However, oxidative stress seems to be present in virtually all forms of hypertension including low-renin hypertension, where the levels of Ang II are reduced. For this reason, the question is if ROS generation is induced by Ang II or it is a consequence of hypertension. We used as hypertensive model the aortic coarctated rats, which were treated with losartan or minoxidil for 7 days. Thoracic aortic segments were excised, and the NAD(P)H oxidase subunits expression, oxidative stress parameters, and heme oxygenase-1 abundance were evaluated. Hypertensive animals had an increase in the activity and expression of NAD(P)H oxidase and, as a consequence, in the oxidative stress parameters. Interestingly, either losartan or minoxidil administration blunted those parameters, indicating that arterial pressure is the key factor in the development of oxidative stress in the hypertensive aorta. We suggest that antihypertensive drug administration at the beginning of this pathology delays the oxidative stress generation, thus preventing the aggravation of this disease. Copyright © 2009 by Lippincott Williams & Wilkins.

Registro:

Documento: Artículo
Título:Lowering arterial pressure delays the oxidative stress generation in a renal experimental model of hypertension
Autor:Polizio, A.H.; Gorzalczany, S.B.; Tomaro, M.L.
Filiación:Departamento de Química Biológica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina
Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Angiotensin II; Antihypertensive drugs; Aorta; Arterial pressure; Oxidative stress; angiotensin II; heme oxygenase 1; losartan; minoxidil; reactive oxygen metabolite; reduced nicotinamide adenine dinucleotide phosphate oxidase; superoxide; animal experiment; animal model; animal tissue; arterial pressure; article; controlled study; enzyme activity; hypertension; male; nitrosative stress; nonhuman; oxidative stress; priority journal; protein expression; rat; thoracic aorta; Animals; Antihypertensive Agents; Aorta, Thoracic; Blood Pressure; Disease Models, Animal; Heme Oxygenase (Decyclizing); Hypertension, Renal; Losartan; Male; Minoxidil; NADPH Oxidase; Oxidative Stress; Rats; Rats, Wistar; Reactive Oxygen Species
Año:2009
Volumen:54
Número:4
Página de inicio:348
Página de fin:354
DOI: http://dx.doi.org/10.1097/FJC.0b013e3181b76767
Título revista:Journal of Cardiovascular Pharmacology
Título revista abreviado:J. Cardiovasc. Pharmacol.
ISSN:01602446
CODEN:JCPCD
CAS:angiotensin II, 11128-99-7; losartan, 114798-26-4; minoxidil, 38304-91-5; reduced nicotinamide adenine dinucleotide phosphate oxidase, 9032-22-8; superoxide, 11062-77-4; Antihypertensive Agents; Heme Oxygenase (Decyclizing), 1.14.99.3; Hmox1 protein, rat, 1.14.99.3; Losartan, 114798-26-4; Minoxidil, 38304-91-5; NADPH Oxidase, 1.6.3.1; Reactive Oxygen Species
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01602446_v54_n4_p348_Polizio

Referencias:

  • Guyton, J.R., Dao, D.T., Lindsay, K.L., Ultrastructure of hypertensive rat aorta (1990) Hypertension, 15, pp. 56-67
  • Gironacci, M.M., Brosnihan, K.B., Ferrario, C.M., Increased hypothalamic angiotensin-(1-7) levels in rats with aortic coarctation-induced hypertension (2007) Peptides, 28, pp. 1580-1585
  • Sowers, J.R., Epstein, M., Frohlich, E.D., Diabetes, hypertension and cardiovascular disease: An update (2001) Hypertension, 37, pp. 1053-1059
  • Touyz, R.M., Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension. What is the clinical significance? (2004) Hypertension, 44, pp. 248-252
  • Zafari, A.M., Ushio-Fukai, M., Akers, M., Role of NADH/NADPH oxidase derived H2O2 in angiotensin II induced vascular hypertrophy (1998) Hypertension, 32, pp. 488-495
  • Rajagopalan, S., Kurz, S., Munzel, T., Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone (1996) J Clin Invest, 97, pp. 1916-1923
  • Jalil, J.E., Perez, A., Ocaranza, M.P., Increased aortic NADPH oxidase activity in rats with genetically high angiotensin converting enzyme levels (2005) Hypertension, 46, pp. 1362-1367
  • Rahman, M., Kimura, S., Nishiyama, A., Angiotensin II stimulates superoxide production via both angiotensin AT1A and AT1B receptors in mouse aorta and heart (2004) Eur J Pharmacol, 485, pp. 243-249
  • Landmesser, U., Dikalov, S., Price, S.R., Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension (2003) J Clin Invest, 111, pp. 1201-1209
  • Somers, M.J., Mavromatis, K., Galis, Z.S., Vascular superoxide production and vasomotor function in hypertension induced by deoxycorticosterone acetate-salt (2000) Circulation, 101, pp. 1722-1728
  • Maines, M.D., Traskhel, G.M., Kutty, R.K., Characterization of two constitutive forms of rat microsomal heme oxygenase: Only one molecular species of the enzyme is inducible (1986) J Biol Chem, 261, pp. 411-419
  • Maines, M.D., Heme oxygenase: Function, multiplicity, regulatory mechanisms, and clinical applications (1988) FASEB J, 2, pp. 2557-2568
  • Loboda, A., Jazwa, A., Grochot-Przeczek, A., Heme oxygenase-1 and the vascular bed: From molecular mechanisms to therapeutic opportunities (2008) Antioxid Redox Signal, 10, pp. 1767-1812
  • Rojo-Ortega, J.M., Genest, J., A method for production of experimental hypertension in rats (1968) Can J Physiol Pharmacol, 46, pp. 883-885
  • Polizio, A.H., Gironacci, M.M., Tomaro, M.L., Angiotensin-(1-7) blocks the angiotensin II-stimulated superoxide production (2007) Pharmacol Res, 56, pp. 86-90
  • Anderson, M.E., Determination of glutathione and glutathione disulfide in biological samples (1985) Method Enzymol, 113, pp. 548-555
  • Lowry, H.O., Rosebrough, N.J., Farr, A.L., Protein measurement with the Folin reagent (1951) J Biol Chem, 193, pp. 265-275
  • Lassegue, B., Clempus, R.E., Vascular NAD(P)H oxidases: Specific features, expression, and regulation (2003) Am J Physiol, 285, pp. R277-R297
  • Nistala, R., Whaley-Connell, A., Sowers, J.R., Redox control of renal function and hypertension (2008) Antioxid Redox Signal, 10, pp. 2047-2089
  • Vasquez-Vivar, J., Kalyanaraman, B., Generation of superoxide from nitric oxide synthase (2000) FEBS Lett, 481, pp. 305-306
  • Alp, N.J., Channon, K.M., Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease (2004) Arterioscler Thromb Vasc Biol, 24, pp. 413-420
  • Vasquez-Vivar, J., Kalyanaraman, B., Martasek, P., Superoxide generation by endothelial nitric oxide synthase: The influence of cofactors (2004) Proc Natl Acad Sci U S A, 95, pp. 9220-9225
  • Simmons, D.L., Botting, R.M., Hla, T., Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition (2004) Pharmacol Rev, 56, pp. 387-437
  • Wittwer, J., Hersberger, M., The two faces of the 15-lipoxygenase in atherosclerosis (2007) Prostaglandins Leukot Essent Fatty Acids, 77, pp. 67-77
  • Zangar, R.C., Davydov, D.R., Verma, S., Mechanisms that regulate production of reactive oxygen species by cytochrome P450 (2004) Toxicol Appl Pharmacol, 199, pp. 316-331
  • Mc Cord, J.M., Fridovich, I., The reduction of cytochrome c by milk xanthine oxidase (1968) J Biol Chem, 243, pp. 5753-5760
  • Pacher, P., Nivorozhkin, A., Szabo, C., Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol (2006) Pharmacol Rev, 58, pp. 87-114
  • Selemidis, S., Sobey, C.G., Wingler, K., NADPH oxidases in the vasculature: Molecular features, roles in disease, and pharmacological inhibition (2008) Pharmacol Therapeut, 120, pp. 254-291
  • Landmesser, U., Cai, H., Dikalov, S., Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin (2002) Hypertension, 40, pp. 511-515
  • Li, J.M., Wheatcroft, S., Fan, L.M., Opposing roles of p47phox in basal versus angiotensin II stimulated alterations in vascular O2 - Production, vascular tone, and mitogen-activated protein kinase activation (2004) Circulation, 109, pp. 1307-1313
  • Paravicini, T.M., Touyz, R.M., Redox signaling in hypertension (2006) Cardiovas Res, 71, pp. 247-258
  • Barton, C.H., Ni, Z., Vaziri, N.D., Enhanced nitric oxide inactivation in aortic coarctation-induced hypertension (2001) Kidney Int, 60, pp. 1083-1087
  • Beckman, J.S., Koppenol, W.H., Nitric oxide, superoxide and peroxynitrite: The good, the bad and the ugly (1996) Am J Physiol, 271, pp. C1424-C1437
  • Ungvari, Z., Csiszar, A., Kaminski, P.M., Chronic high pressure-induced arterial oxidative stress: Involvement of protein kinase C-dependent NAD(P)H oxidase and local renin-angiotensin system (2004) Am J Pathol, 165, pp. 219-226
  • Maeso, R., Navarro-Cid, J., Rodrigo, E., Effects of antihypertensive therapy on factors mediating endothelium-dependent relaxation in rats treated chronically with L-NAME (1999) J Hypertens, 17, pp. 221-227
  • Nakata, S., Tsutsui, M., Shimokawa, H., Spontaneous myocardial infarction in mice lacking all nitric oxide synthase isoforms (2008) Circulation, 117, pp. 2211-2223
  • Lehoux, S., Tedgui, A., Signal transduction of mechanical stresses in the vascular wall (1998) Hypertension, 32, pp. 338-345
  • Kojda, G., Hambrecht, R., Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy (2005) Cardiovasc Res, 67, pp. 187-197
  • Polizio, A.H., Balestrasse, K.B., Yannarelli, G.G., Angiotensin II regulates cardiac hypertrophy via oxidative stress but not antioxidant enzyme activities in experimental renovascular hypertension (2008) Hypertens Res, 31, pp. 325-334
  • Polizio, A.H., Balestrasse, K.B., Gornalusse, G.G., Losartan exerts renoprotection through NAD(P)H oxidase downregulation in a renovascular model of hypertension (2009) Regul Peptides, 158, pp. 28-33
  • Llesuy, S.F., Tomaro, M.L., Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damage (1994) Biochim Biophys Acta, 1223, pp. 9-14
  • Polizio, A.H., Gonzales, S., Muñoz, M.C., Behaviour of the anti-oxidant defense system and heme oxygenase-1 protein expression in fructosehypertensive rats (2006) Clin Exp Pharmacol, 33, pp. 734-739

Citas:

---------- APA ----------
Polizio, A.H., Gorzalczany, S.B. & Tomaro, M.L. (2009) . Lowering arterial pressure delays the oxidative stress generation in a renal experimental model of hypertension. Journal of Cardiovascular Pharmacology, 54(4), 348-354.
http://dx.doi.org/10.1097/FJC.0b013e3181b76767
---------- CHICAGO ----------
Polizio, A.H., Gorzalczany, S.B., Tomaro, M.L. "Lowering arterial pressure delays the oxidative stress generation in a renal experimental model of hypertension" . Journal of Cardiovascular Pharmacology 54, no. 4 (2009) : 348-354.
http://dx.doi.org/10.1097/FJC.0b013e3181b76767
---------- MLA ----------
Polizio, A.H., Gorzalczany, S.B., Tomaro, M.L. "Lowering arterial pressure delays the oxidative stress generation in a renal experimental model of hypertension" . Journal of Cardiovascular Pharmacology, vol. 54, no. 4, 2009, pp. 348-354.
http://dx.doi.org/10.1097/FJC.0b013e3181b76767
---------- VANCOUVER ----------
Polizio, A.H., Gorzalczany, S.B., Tomaro, M.L. Lowering arterial pressure delays the oxidative stress generation in a renal experimental model of hypertension. J. Cardiovasc. Pharmacol. 2009;54(4):348-354.
http://dx.doi.org/10.1097/FJC.0b013e3181b76767