Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Triples of GPS radio occultation (RO) temperature data are used to derive horizontal and vertical gravity wave (GW) parameters in the stratosphere between 20 km and 40 km from which the vertical flux of horizontal momentum is determined. Compared to previous studies using RO data, better limiting values for the sampling distance (Δd≤250 km) and the time interval (Δt≤15 min) are used. For several latitude bands the mean momentum fluxes (MFs) derived in this study are considerably larger than MF from other satellite missions based on horizontal wavelengths calculated between two adjacent temperature profiles along the satellite track. Error sources for the estimation of MF from RO data and the geometrical setup for the applied method are investigated. Another crucial issue discussed in this paper is the influence of different background separation methods to the final MF. For GW analysis a measured temperature profile is divided into a fluctuation and a background and it is assumed that the fluctuation is caused by GWs only. For the background separation, i.e., the detrending of large-scale processes from the measured temperature profile, several methods exist. In this study we compare different detrending approaches and for the first time an attempt is made to detrend RO data with ERA-Interim data from the European Centre for Medium-Range Weather Forecasts. We demonstrate that the horizontal detrending based on RO data and ERA-Interim gives more consistent results compared with a vertical detrending. © 2016. American Geophysical Union. All rights reserved.

Registro:

Documento: Artículo
Título:Stratospheric gravity wavemomentum flux from radio occultations
Autor:Schmidt, T.; Alexander, P.; de la Torre, A.
Filiación:GFZ German Research Centre for Geosciences, Potsdam, Germany
IFIBA, CONICET, Ciudad Universitaria, Buenos Aires, Argentina
Facultad de Ingeniería, Universidad Austral, Buenos Aires, Argentina
Palabras clave:data processing; flux measurement; GPS; gravity wave; momentum transfer; radio; satellite imagery; satellite mission; separation; stratosphere; temperature profile; Europe
Año:2016
Volumen:121
Número:9
Página de inicio:4443
Página de fin:4467
DOI: http://dx.doi.org/10.1002/2015JD024135
Título revista:Journal of Geophysical Research
Título revista abreviado:J. Geophy. Res.
ISSN:01480227
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01480227_v121_n9_p4443_Schmidt

Referencias:

  • Allen, S.J., Vincent, R.A., Gravity wave activity in the lower atmosphere: Seasonal and latitudinal variations (1995) J. Geophys. Res, 100, pp. 1327-1350
  • Anthes, R.A., Exploring Earth’s atmosphere with radio occultation: Contributions to weather, climate and space weather (2011) Atmos. Meas. Tech, 4, pp. 1077-1103
  • Anthes, R.A., The COSMIC/Formosat-3 mission: Early results (2008) Am. Meteorol. Soc, 89, pp. 313-333
  • Alexander, M.J., On the latitudinal variations observed in gravity waves with short vertical wavelengths (2002) J. Atmos. Sci, 59, pp. 1394-1404
  • Alexander, M.J., Global estimates of gravity wavemomentum flux from High Resolution Dynamics Limb Sounder observations (2008) J. Geophys. Res, 113, pp. D15S18
  • Alexander, M.J., Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models (2010) Q. J. R. Meteorol. Soc, 136, pp. 1103-1124
  • Alexander, M.J., Global and seasonal variations in three-dimensional gravity wave momentum flux from satellite limb-sounding temperatures (2015) Geophys. Res. Lett, 42, pp. 6860-6867
  • Alexander, P., Interpretation of gravity wave signatures in GPS radio occultations (2008) J. Geophys. Res, 113, pp. D16117
  • Alexander, P., Distribution functions and statistical parameters that may be used to characterize limb sounders gravity wave climatologies in the stratosphere (2015) Adv. Space Res, 56, pp. 619-633
  • Baumgaertner, A.J.G., McDonald, A.J., A gravity wave climatology for Antarctica compiled from Challenging Minisatellite Payload/Global Positioning System (CHAMP/GPS) radio occultations (2007) J. Geophys. Res, 112, pp. D05103
  • Dee, D.P., The ERA-Interim reanalysis: Configuration and performance of the data assimilation system (2011) Q. J. R. Meteorol. Soc, 137, pp. 553-597
  • de la Torre, A., A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP (2006) Geophys. Res. Lett, 33, pp. L24809
  • Ern, M., Absolute values of gravity wave momentum flux derived from satellite data (2004) J. Geophys. Res, 109, pp. D20103
  • Ern, M., Preusse, P., Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere (2009) Geophys. Res. Lett, 36, pp. L21801
  • Ern, M., Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere (2011) J. Geophys. Res, 116, pp. D19107
  • Faber, A., On the determination of gravity wave momentum flux from GPS radio occultation data (2013) Atmos. Meas. Tech, 6, pp. 3169-3180
  • Fritts, D.C., Alexander, M.J., Gravity wave dynamics and effects in the middle atmosphere (2003) Rev. Geophys, 41 (1), p. 1003
  • Fritts, D.C., Mean and variable forcing of the middle atmosphere by gravity waves (2006) J. Atmos. Sol. Terr. Phys, 68, pp. 247-265
  • Froehlich, K., The global distribution of gravity wave energy in the lower stratosphere derived from GPS data and gravity wave modelling: Attempt and challenges (2007) J. Atmos. Sol. Terr. Phys, 69, pp. 2238-2248
  • Geller, M.A., (2013) A comparison between gravity wave momentum fluxes in observations and climate models, 26, pp. 6383-6405
  • Gille, J., High Resolution Dynamics Limb Sounder: Experiment overview, recovery, and validation of initial temperature data (2008) J. Geophys. Res, 113, pp. D16S43
  • Hei, H., Characteristics of atmospheric gravity wave activity in the polar regions revealed by GPS radio occultation data with CHAMP (2008) J. Geophys. Res, 113, pp. D04107
  • Heale, C.J., Thermospheric dissipation of upward propagating gravity wave packets (2014) J. Geophys. Res. Space Physics, 119, pp. 3857-3872
  • John, S.R., Kumar, K.K., A discussion on the methods of extracting gravity wave perturbations from space-based measurements (2013) Geophys. Res. Lett, 40, pp. 2406-2410
  • Kursinski, E.R., Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System (1997) J. Geophys. Res, 102, pp. 23,429-23,465
  • Lange, M., Jacobi, C., Analysis of gravity waves from radio occultation measurements (2003) First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, pp. 479-484. , edited by C. Reigber, H. Lühr, and P. Schwintzer, Springer, Berlin
  • Lindzen, R.S., Holton, J.R., A theory of the Quasi-Biennial Oscillation (1968) J. Atmos. Sci, 25, pp. 1095-1107
  • Marquardt, C., Healy, S.B., Measurement noise and stratospheric gravity wave characteristics obtained from GPS occultation data (2005) J. Meteorol. Soc. Jpn, 83, pp. 417-428
  • Nappo, C.J., (2002) An Introduction to Atmospheric Gravity Waves, Intern. Geophys. Ser, 85, p. 276. , Academic Press, San Diego, Calif
  • Offermann, D., Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) experiment and middle atmosphere variability (1999) J. Geophys. Res, 104, pp. 16,311-16,325
  • Preusse, P., Space based measurements of stratospheric mountain waves by CRISTA: 1. Sensitivity, analysis method and a case study (2002) J. Geophys. Res, 107, p. 8178
  • Preusse, P., Tropopause to mesopause gravity waves in August: Measurement and modeling (2006) J. Atmos. Sol. Terr. Phys, 68, pp. 1730-1751
  • Randel, W.J., Wu, F., Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements (2005) J. Geophys. Res, 110, pp. D03102
  • Russell, J.M., III, An overview of the SABER experiment and preliminary calibration results (1999) Proc. SPIE, 3756, pp. 277-288
  • Schmidt, T., Global gravity wave activity in the tropopause region from CHAMP radio occultation data (2008) Geophys. Res. Lett, 35, pp. L16807
  • Schmidt, T., Observational characteristics of the tropopause inversion layer derived from CHAMP/GRACE radio occultations and MOZAIC aircraft data (2010) J. Geophys. Res, 115, pp. D24304
  • Smith, E., Weintraub, S., The constants in the equation for atmospheric refractive index at radio frequencies (1953) Proc. I.R.E, 41, pp. 1035-1037
  • Schroeder, S., Gravity waves resolved in ECMWF and measured by SABER (2009) Geophys. Res. Lett, 36, pp. L10805
  • Tsuda, T., Characteristics of gravity waves with short vertical wavelengths observed with radiosonde and GPS occultation during DAWEX (Darwin Area Wave Experiment) (2004) J. Geophys. Res, 109, pp. D20S03
  • Tsuda, T., A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET) (2000) J. Geophys. Res, 105, pp. 7257-7273
  • Wang, L., Alexander, M.J., Global estimates of gravity wave parameters from GPS radio occultation temperature data (2010) J. Geophys. Res, 115, pp. D21122
  • Wu, D.L., Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques (2006) Adv. Space Res, 37, pp. 2269-2277
  • Yan, X., Global observations of gravity waves from High Resolution Dynamics Limb Sounder temperature measurements: A yearlong record of temperature amplitude and vertical wavelength (2010) J. Geophys. Res, 115, pp. D10113
  • Zhang, X., A global morphology of gravity wave activity in the stratosphere revealed by the 8-year SABER/TIMED data (2012) J. Geophys. Res, 117, pp. D21101

Citas:

---------- APA ----------
Schmidt, T., Alexander, P. & de la Torre, A. (2016) . Stratospheric gravity wavemomentum flux from radio occultations. Journal of Geophysical Research, 121(9), 4443-4467.
http://dx.doi.org/10.1002/2015JD024135
---------- CHICAGO ----------
Schmidt, T., Alexander, P., de la Torre, A. "Stratospheric gravity wavemomentum flux from radio occultations" . Journal of Geophysical Research 121, no. 9 (2016) : 4443-4467.
http://dx.doi.org/10.1002/2015JD024135
---------- MLA ----------
Schmidt, T., Alexander, P., de la Torre, A. "Stratospheric gravity wavemomentum flux from radio occultations" . Journal of Geophysical Research, vol. 121, no. 9, 2016, pp. 4443-4467.
http://dx.doi.org/10.1002/2015JD024135
---------- VANCOUVER ----------
Schmidt, T., Alexander, P., de la Torre, A. Stratospheric gravity wavemomentum flux from radio occultations. J. Geophy. Res. 2016;121(9):4443-4467.
http://dx.doi.org/10.1002/2015JD024135