Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Above the southern Andes range and its prolongation in the Antarctic Peninsula, large-amplitude mountain and shear gravity waves observed with Weather Research and Forecasting (WRF) mesoscale model simulations during winter 2009 are analyzed. Two specific reasons motivated this study: (1) a decade of satellite observations of temperature fluctuations in the stratosphere, allowing us to infer that this region may be launching the largest-amplitude gravity waves into the upper atmosphere, and (2) the recent design of a research program to investigate these features in detail, the Southern Andes Antarctic Gravity wave Initiative (SAANGRIA). The simulations are forced with ERA-Interim data from the European Centre for Medium-Range Weather Forecasts. The approach selected for the regional downscaling is based on consecutive integrations with weekly reinitialization with 24 h of spin-up, and the outputs during this period are excluded from the analysis. From 1 June to 31 August 2009, five case studies were selected on the basis of their outstanding characteristics and large wave amplitudes. In general, one or two prevailing modes of oscillation are identified after applying continuous wavelet transforms at constant pressure levels and perpendicularly to the nominal orientation of the dominant wave crests. In all cases, the dominant modes are characterized by horizontal wavelengths around 50 km. Their vertical wavelengths, depending on a usually strong background wind shear, are estimated to be between 2 and 11 km. The corresponding intrinsic periods range between 10 and 140 min. In general, the estimated vertical wavelength (intrinsic period) maximizes (minimizes) around 250-300 hPa. The synoptic circulation for each case is described. Zonal and meridional components of the vertical flux of horizontal momentum are shown in detail for each case, including possible horizontal wavelengths between 12 and 400 km. Large values of this flux are observed at higher pressure levels, decreasing with increasing height after a progressive deposition of momentum by different mechanisms. As expected, in the wintertime upper troposphere and lower stratosphere in this region, a prevailing zonal component is negative almost everywhere, with the exception of one case above the northern tip of the Antarctic Peninsula. A comparison with previous experimental results reported in the region from in situ and remote sensing measurements suggests a good agreement with the momentum flux profiles computed from the simulations. Partial wave reflection near the tropopause was found, as considerable departures from equipartition between potential and kinetic wave energy are obtained in all cases and at all pressure levels. This ratio was always less than 1 below the lower stratosphere. Copyright 2012 by the American Geophysical Union.

Registro:

Documento: Artículo
Título:Large-amplitude gravity waves above the southern Andes, the Drake Passage, and the Antarctic Peninsula
Autor:De La Torre, A.; Alexander, P.; Hierro, R.; Llamedo, P.; Rolla, A.; Schmidt, T.; Wickert, J.
Filiación:Facultad de Ingeniería, Universidad Austral, Avda. Garay 125, 5to Piso, C1063ABB Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg A17, D-14473 Potsdam, Germany
Palabras clave:Atmospherics; Computer simulation; Gravity waves; Remote sensing; Research; Upper atmosphere; Wave energy conversion; Wavelet transforms; Weather forecasting; Antarctic Peninsula; Background winds; Constant pressures; Continuous Wavelet Transform; Different mechanisms; Dominant mode; Down-scaling; Drake passage; Equipartition; European Centre for Medium-Range Weather Forecasts; In-situ; Kinetic waves; Lower stratosphere; Mesoscale model simulation; Momentum flux; Partial waves; Pressure level; Reinitialization; Research programs; Satellite observations; Spin-up; Temperature fluctuation; Upper troposphere; Vertical fluxes; Wave amplitudes; Wave crest; Weather research and forecasting; Shear flow; air-sea interaction; amplitude; gravity wave; in situ measurement; mesocosm; mesoscale motion; mountain region; remote sensing; wave energy; wavelength; wind shear; zonal wind; Andes; Antarctic Peninsula; Antarctica; Drake Passage; West Antarctica
Año:2012
Volumen:117
Número:2
DOI: http://dx.doi.org/10.1029/2011JD016377
Título revista:Journal of Geophysical Research Atmospheres
Título revista abreviado:J. Geophys. Res. D Atmos.
ISSN:01480227
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_01480227_v117_n2_p_DeLaTorre.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01480227_v117_n2_p_DeLaTorre

Referencias:

  • Alexander, M.J., Teitelbaum, H., Observation and analysis of a large amplitude mountain wave event over the Antarctic peninsula (2007) J. Geophys. Res., 112, pp. D21103. , doi:10.1029/2006JD008368
  • Alexander, M.J., Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations (2008) J. Geophys. Res., 113, pp. D15S18. , doi:10.1029/2007JD008807
  • Alexander, M.J., Eckermann, S.D., Broutman, D., Ma, J., Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite (2009) Geophys. Res. Lett., 36, pp. L12816. , doi:10.1029/2009GL038587
  • Boccara, G., Hertzog, A., Vincent, R.A., Vial, F., Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part I: Theory and simulations (2008) J. Atmos. Sci., 65 (10), pp. 3042-3055
  • Chen, C.-C., Durran, D.R., Hakim, G.J., Mountain-wave momentum flux in an evolving synoptic-scale flow (2005) Journal of the Atmospheric Sciences, 62 (9), pp. 3213-3231. , DOI 10.1175/JAS3543.1
  • De La Torre, A., Alexander, P., Llamedo, P., Menendez, C., Schmidt, T., Wickert, J., Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism? (2006) Geophysical Research Letters, 33 (24), pp. L24810. , DOI 10.1029/2006GL027343
  • Eliassen, A., Palm, E., On the transfer of energy in stationary mountain waves (1961) Geofys. Publ., 22, pp. 1-23
  • Ern, M., Preusse, P., Alexander, M.J., Warner, C.D., Absolute values of gravity wave momentum flux derived from satellite data (2004) Journal of Geophysical Research D: Atmospheres, 109 (20), pp. D2010301-D2010317. , DOI 10.1029/2004JD004752
  • Fritts, D.C., Alexander, M.J., Gravity wave dynamics and effects in the middle atmosphere (2003) Rev. Geophys., 41 (1), p. 1003. , doi:10.1029/ 2001RG000106
  • Fritts, D.C., Smith, R.B., Doyle, J.D., Eckermann, S., Overview of the Southern Andes-Antarctic Gravity wave Initiative (SAANGRIA (2010) 14th Conference on Mountain Meteorology, Am. Meteorol. Soc, , paper presented at Olympic Valley, Calif
  • Gill, A.E., (1982) Atmosphere-Ocean Dynamics, p. 662. , Academic, New York
  • Hamming, R.W., (1998) Digital Filters, , 3rd ed., Dover, <ftl>Mineola, N. Y
  • Hertzog, A., Boccara, G., Vincent, R.A., Vial, F., Cocquerez, P., Estimation of gravity wave momentum flux and phase speeds from quasi- Lagrangian stratospheric balloon flights. Part II: Results from the Vorcore campaign in Antarctica (2008) J. Atmos. Sci., 65 (10), pp. 3056-3070
  • Plougonven, R., Hertzog, A., Teitelbaum, H., Observations and simulations of a large-amplitude mountain wave breaking over the Antarctic Peninsula (2008) J. Geophys. Res., 113, pp. D16113. , doi:10.1029/ 2007JD009739
  • Preusse, P., Eckermann, S.D., Ern, M., Transparency of the atmosphere to short horizontal wavelength gravity waves (2008) J. Geophys. Res., 113, pp. D24104. , doi:10.1029/2007JD009682
  • Shutts, G.J., Vosper, S.B., Stratospheric gravity waves revealed in NWP model forecasts (2011) Q. J. R. Meteorol. Soc., 137 (655), pp. 303-317
  • Shutts, G.J., Kitchen, M., Hoare, P.H., A large amplitude gravity wave in the lower stratosphere detected by radiosonde (1988) Q. J. R. Meteorol. Soc., 114, pp. 579-594
  • Simmons, A.J., ERA-Interim: New ECMWF reanalysis products from 1989 onwards (2007) ECMWF Newsl., 110, pp. 25-35
  • Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M., Huang, X.-Y., Powers, J.G., A description of the advanced research WRF version 3 (2008) Tech. Note NCAR/TN-475+STR, Natl. Cent. for Atmos. Res, , Boulder, Colo
  • Smith, R.B., The influence of mountains on the atmosphere (1979) Adv. Geophys., 21, pp. 87-230
  • Smith, R.B., Woods, B.K., Jensen, J., Cooper, W.A., Doyle, J.D., Jiang, Q., Grubii, V., Mountain waves entering the stratosphere (2008) J. Atmos. Sci., 65, pp. 2543-2562
  • Vincent, R.A., Reid, I.M., HF doppler measurements of mesospheric gravity wave momentum fluxes (1983) Journal of the Atmospheric Sciences, 40 (5), pp. 1321-1333
  • Vincent, R.A., Hertzog, A., Boccara, G., Vial, F., Quasi-Lagrangian superpressure balloon measurements of gravity-wave momentum fluxes in the polar stratosphere of both hemispheres (2007) Geophysical Research Letters, 34 (19), pp. L19804. , DOI 10.1029/2007GL031072
  • Von Storch, H., Langenberg, H., Feser, F., A spectral nudging technique for dynamical downscaling purposes (2000) Mon. Weather Rev., 128, pp. 3664-3673
  • Wang, L., Alexander, M.J., Global estimates of gravity wave parameters from GPS radio occultation temperature data (2010) J. Geophys. Res., 115, pp. D21122. , doi:10.1029/2010JD013860
  • Wu, D.L., Preusse, P., Eckermann, S.D., Jiang, J.H., Juarez, M.D.L.T., Coy, L., Wang, D.Y., Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques (2006) Advances in Space Research, 37 (12), pp. 2269-2277. , DOI 10.1016/j.asr.2005.07.031, PII S0273117705009257

Citas:

---------- APA ----------
De La Torre, A., Alexander, P., Hierro, R., Llamedo, P., Rolla, A., Schmidt, T. & Wickert, J. (2012) . Large-amplitude gravity waves above the southern Andes, the Drake Passage, and the Antarctic Peninsula. Journal of Geophysical Research Atmospheres, 117(2).
http://dx.doi.org/10.1029/2011JD016377
---------- CHICAGO ----------
De La Torre, A., Alexander, P., Hierro, R., Llamedo, P., Rolla, A., Schmidt, T., et al. "Large-amplitude gravity waves above the southern Andes, the Drake Passage, and the Antarctic Peninsula" . Journal of Geophysical Research Atmospheres 117, no. 2 (2012).
http://dx.doi.org/10.1029/2011JD016377
---------- MLA ----------
De La Torre, A., Alexander, P., Hierro, R., Llamedo, P., Rolla, A., Schmidt, T., et al. "Large-amplitude gravity waves above the southern Andes, the Drake Passage, and the Antarctic Peninsula" . Journal of Geophysical Research Atmospheres, vol. 117, no. 2, 2012.
http://dx.doi.org/10.1029/2011JD016377
---------- VANCOUVER ----------
De La Torre, A., Alexander, P., Hierro, R., Llamedo, P., Rolla, A., Schmidt, T., et al. Large-amplitude gravity waves above the southern Andes, the Drake Passage, and the Antarctic Peninsula. J. Geophys. Res. D Atmos. 2012;117(2).
http://dx.doi.org/10.1029/2011JD016377