Artículo

Bourguignon, N.; Irazusta, V.; Isaac, P.; Estévez, C.; Maizel, D.; Ferrero, M.A."Identification of proteins induced by polycyclic aromatic hydrocarbon and proposal of the phenanthrene catabolic pathway in Amycolatopsis tucumanensis DSM 45259" (2019) Ecotoxicology and Environmental Safety. 175:19-28
El editor solo permite la decarga de la versión post-print. Si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In the present study the polycyclic aromatic hydrocarbon removal and metabolic adaptation of Amycolatopsis tucumanensis DSM 45259 were investigated. Analysis of one-dimensional gel electrophoresis of crude cell extracts revealed differential synthesis of proteins which were identified by MALDI-TOF. To elucidate the phenanthrene metabolic pathway in A. tucumanensis DSM45259, two-dimensional electrophoresis and detection of phenanthrene degradation intermediates by GS-MS were performed. The presence of aromatic substrates resulted in changes in the abundance of proteins involved in the metabolism of aromatic compounds, oxidative stress response, energy production and protein synthesis. The obtained results allowed us to clarify the phenanthrene catabolic pathway, by confirming the roles of several proteins involved in the degradation process and comprehensive adaptation. This may clear the way for more efficient engineering of bacteria in the direction of more effective bioremediation applications. © 2019

Registro:

Documento: Artículo
Título:Identification of proteins induced by polycyclic aromatic hydrocarbon and proposal of the phenanthrene catabolic pathway in Amycolatopsis tucumanensis DSM 45259
Autor:Bourguignon, N.; Irazusta, V.; Isaac, P.; Estévez, C.; Maizel, D.; Ferrero, M.A.
Filiación:Universidad Tecnológica Nacional (UTN), Facultad Regional de Haédo, París 532, Haedo, Buenos Aires 1706, Argentina
Instituto de Investigaciones para la Industria Química (INIQUI), CONICET-UNSa, Argentina
Facultad de Ciencias Naturales, UNSa, Salta, Argentina
Centro de Investigaciones y Transferencia de Villa María (CIT Villa María), CONICET-Instituto de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Córdoba, Argentina
Planta Piloto de Procesos Industriales Microbiológicos (PROIMI, CONICET), Tucumán, Argentina
Instituto de Astronomía y Física del Espacio, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Buenos Aires, Intendente Güiraldes 2160, C1428EGA CABA, Argentina
Palabras clave:Amycolatopsis; Biodegradation; Metabolites; Phenanthrene metabolic pathway; Proteomics; aconitate hydratase; alcohol dehydrogenase; aldehyde dehydrogenase; amidase; chaperonin 60; DNA directed DNA polymerase gamma; elongation factor Ts; elongation factor Tu; enoyl coenzyme A hydratase; heat shock protein; methane monooxygenase; naphthalene; oxygenase; phenanthrene; polycyclic aromatic hydrocarbon; protein DnaK; pyrene; pyruvate dehydrogenase; bacterium; biodegradation; catabolism; metabolite; PAH; phenanthrene; protein; proteomics; Amycolatopsis; Article; bacterial strain; bioremediation; catabolism; controlled study; energy yield; nonhuman; oxidative stress; protein analysis; protein degradation; protein synthesis; proteomics; signal transduction; two dimensional gel electrophoresis; Amycolatopsis
Año:2019
Volumen:175
Página de inicio:19
Página de fin:28
DOI: http://dx.doi.org/10.1016/j.ecoenv.2019.02.071
Handle:http://hdl.handle.net/20.500.12110/paper_01476513_v175_n_p19_Bourguignon
Título revista:Ecotoxicology and Environmental Safety
Título revista abreviado:Ecotoxicol. Environ. Saf.
ISSN:01476513
CODEN:EESAD
CAS:aconitate hydratase, 9024-25-3; alcohol dehydrogenase, 9031-72-5; aldehyde dehydrogenase, 37353-37-0, 9028-86-8; amidase, 9012-56-0; enoyl coenzyme A hydratase, 9027-13-8; methane monooxygenase, 51961-97-8; naphthalene, 91-20-3; oxygenase, 9037-29-0, 9046-59-7; phenanthrene, 85-01-8; pyrene, 129-00-0; pyruvate dehydrogenase, 9014-20-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01476513_v175_n_p19_Bourguignon

Referencias:

  • Albarracín, V.H., Alonso-Vega, P., Trujillo, M.E., Amoroso, M.J., Abate, C.M., Amycolatopsis tucumanensis sp. nov., a copper-resistant actinobacterium isolated from polluted sediments (2010) Int. J. Syst. Evol. Microbiol., 60, pp. 397-401
  • Albarracín, V.H., Amoroso, M.J., Abate, C.M., Isolation and characterization of indigenous copper-resistant actinomycete strains (2005) Chem. Erde - Geochem., 65, pp. 145-156
  • Annweiler, E., Richnow, H.H., Antranikian, G., Hebenbrock, S., Garms, C., Franke, S., Francke, W., Michaelis, W., Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans (2000) Appl. Environ. Microbiol., 66, pp. 518-523
  • ATSDR, U., (2005), http., Toxicological profile for naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry. August 2005. Accessible via:; Baboshin, M.A., Golovleva, L.A., Aerobic bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) and its kinetic aspects (2012) Microbiology, 81, pp. 639-650
  • Balachandran, C., Duraipandiyan, V., Balakrishna, K., Ignacimuthu, S., Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil (2012) Bioresour. Technol., 112, pp. 83-90
  • Bamforth, S.M., Singleton, I., Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions (2005) J. Chem. Technol. Biot., 80, pp. 723-736
  • Borodina, E., Nichol, T., Dumont, M.G., Smith, T.J., Murreil, J.C., Mutagenesis of the “leucine gate” to explore the basis of catalytic versatility in soluble methane monooxygenase (2007) Appl. Environ. Microbiol., 73, pp. 6460-6467
  • Bourguignon, N., Bargiela, R., Rojo, D., Chernikova, T.N., de Rodas, S.A.L., García-Cantalejo, J., Näther, D.J., Ferrer, M., Insights into the degradation capacities of Amycolatopsis tucumanensis DSM 45259 guided by microarray data. World (2016) J. Microbiol. Biot., 32 (12), p. 201
  • Bourguignon, N., Isaac, P., Alvarez, H., Amoroso, M.J., Ferrero, M.A., Enhanced polyaromatic hydrocarbon degradation by adapted cultures of actinomycete strains (2014) J. Basic Microb., 54, pp. 1288-1294
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
  • Bugg, T., Foght, J.M., Pickard, M.A., Gray, R., Uptake and active efflux of polycyclic aromatic hydrocarbons by pseudomonas uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluorescens LP6a (2000) Appl. Environ. Microbiol., 66 (12), pp. 5387-5392
  • Cerniglia, C.E., Biodegradation of polycyclic aromatic hydrocarbons (1992) Biodegradation, 3, pp. 351-368
  • Ceylan, S., Akbulut, B.S., Denizci, A.A., Kazan, D., Proteomic insight into phenolic adaptation of a moderately halophilic Halomonas sp. strain AAD12 (2011) Can. J. Microbiol., 57, pp. 295-302
  • Chowdhury, P.P., Basu, S., Dutta, A., Dutta, T.K., Functional characterization of a novel member of the amidohydrolase 2 protein family, 2-hydroxy-1-naphthoic acid nonoxidative decarboxylase from Burkholderia sp. strain BC1 (2016) J. Bacteriol., 198, pp. 1755-1763
  • Colin, V.L., Castro, M.F., Amoroso, M.J., Villegas, L.B., Production of bioemulsifiers by Amycolatopsis tucumanensis DSM 45259 and their potential application in remediation technologies for soils contaminated with hexavalent chromium (2013) J. Hazard. Mater., 261, pp. 577-583
  • Dávila Costa, J.S., Albarracín, V.H., Abate, C.M., Responses of environmental Amycolatopsis strains to copper stress (2011) Ecotoxicol. Environ. Safe., 74, pp. 2020-2028
  • Dávila Costa, J.S., Kothe, E., Abate, C.M., Amoroso, M.J., Unraveling the Amycolatopsis tucumanensis copper-resistome (2012) BioMetals, 25, pp. 905-917
  • de Menezes, A., Clipson, N., Doyle, E., Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil (2012) Environ. Microbiol., 14, pp. 2577-2588
  • Deuerling, E., Bukau, B., Chaperone-assisted folding of newly synthesized proteins in the cytosol (2004) Crit. Rev. Biochem. Mol., 39, pp. 261-277
  • Deveryshetty, J., Phale, P.S., Biodegradation of phenanthrene by Alcaligenes sp. strain PPH: partial purification and characterization of 1-hydroxy-2-naphthoic acid hydroxylase (2010) FEMS Microbiol. Lett., 311, pp. 93-101
  • Gallo, G., Renzone, G., Alduina, R., Stegmann, E., Weber, T., Lantz, A.E., Thykaer, J., Puglia, A.M., Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina (2010) Proteomics, 10, pp. 1336-1358
  • Graves, P.R., Haystead, T.A.J., Molecular biologist's guide to proteomics (2002) Microbiol. Mol. Biol. Rev., 66, pp. 39-63
  • Haritash, A.K., Kaushik, C.P., Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): a review (2009) J. Hazard. Mater., 169, pp. 1-15
  • Isaac, P., Sánchez, L.A., Bourguignon, N., Cabral, M.E., Ferrero, M.A., Indigenous PAH-degrading bacteria from oil-polluted sediments in Caleta Cordova, Patagonia Argentina (2013) Int. Biodeterior. Biodegr., 82, pp. 207-214
  • Kelley, I., Freeman, J.P., Evans, F.E., Cerniglia, C.E., Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1 (1993) Appl. Environ. Microbiol., 59, pp. 800-806
  • Khan, A.A., Wang, R.F., Cao, W.W., Doerge, D.R., Wennerstrom, D., Cerniglia, C.E., Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp strain PYR-1 (2001) Appl. Environ. Microbiol., 67, pp. 3577-3585
  • Kim, S.-J., Jones, R.C., Cha, C.-J., Kweon, O., Edmondson, R.D., Cerniglia, C.E., Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel electrophoresis and de novo sequencing methods (2004) Proteomics, 4, pp. 3899-3908
  • Kim, S.J., Kweon, O., Jones, R.C., Freeman, J.P., Edmondson, R.D., Cerniglia, C.E., Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology (2007) J. Bacteriol., 189, pp. 464-472
  • Kim, Y.H., Freeman, J.P., Moody, J.D., Engesser, K.H., Cerniglia, C.E., Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1 (2005) Appl. Microbiol. Biot., 67, pp. 275-285
  • Kirimura, K., Gunji, H., Wakayama, R., Hattori, T., Ishii, Y., Enzymatic Kolbe–Schmitt reaction to form salicylic acid from phenol: enzymatic characterization and gene identification of a novel enzyme, Trichosporon moniliiforme salicylic acid decarboxylase (2010) Biochem. Biophys. Res. Co., 394, pp. 279-284
  • Lee, S.E., Seo, J.S., Keum, Y.S., Lee, K.J., Li, Q.X., Fluoranthene metabolism and associated proteins in Mycobacterium sp. JS14 (2007) Proteomics, 7, pp. 2059-2069
  • Li, T., Iwaki, H., Fu, R., Hasegawa, Y., Zhang, H., Liu, A., α-Amino-β-carboxymuconic-ε-semialdehyde decarboxylase (ACMSD) is a new member of the amidohydrolase superfamily (2006) Biochemistry-US, 45, pp. 6628-6634
  • Lu, J., Guo, C., Li, J., Zhang, H., Lu, G., Dang, Z., Wu, R., A fusant of Sphingomonas sp. GY2B and Pseudomonas sp. GP3A with high capacity of degrading phenanthrene (2013) World J. Microbiol. Biot., 29, pp. 1685-1694
  • Manohar, S., Kim, C., Karegoudar, T., Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam (2001) Appl. Microbiol. Biot., 55, pp. 311-316
  • Moody, J.D., Freeman, J.P., Doerge, D.R., Cerniglia, C.E., Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1 (2001) Appl. Environ. Microbiol., 67, pp. 1476-1483
  • Navarro-Llorens, J.M., Patrauchan, M.A., Stewart, G.R., Davies, J.E., Eltis, L.D., Mohn, W.W., Phenylacetate catabolism in Rhodococcus sp. strain RHA1: a central pathway for degradation of aromatic compounds (2005) J. Bacteriol., 187, pp. 4497-4504
  • Nesatyy, V.J., Suter, M.J.F., Proteomics for the analysis of environmental stress responses in organisms (2007) Environ. Sci. Technol., 41, pp. 6891-6900
  • Patel, R.N., Hou, C.T., Laskin, A.I., Felix, A., Microbial oxidation of hydrocarbons: properties of a soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium sp. strain CRL-26 (1982) Appl. Environ. Microbiol., 44, pp. 130-1137
  • Peng, R.H., Xiong, A.S., Xue, Y., Fu, X.Y., Gao, F., Zhao, W., Tian, Y.S., Yao, Q.H., Microbial biodegradation of polyaromatic hydrocarbons (2008) FEMS Microbiol. Rev., 32, pp. 927-955
  • Perkins, D.N., Pappin, D.J.C., Creasy, D.M., Cottrell, J.S., Probability-based protein identification by searching sequence databases using mass spectrometry data (1999) Electrophoresis, 20, pp. 3551-3567
  • Polti, M.A., Aparicio, J.D., Benimeli, C.S., Amoroso, M.J., Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria (2014) Int. Biodeterior. Biodegr., 88, pp. 48-55
  • Prabhu, Y., Phale, P.S., Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation (2003) Appl. Microbiol. Biot., 61, pp. 342-351
  • Saito, A., Iwabuchi, T., Harayama, S., A novel phenanthrene dioxygenase from Nocardioides sp. strain KP7: expression in Escherichia coli (2000) J. Bacteriol., 182, pp. 2134-2141
  • Sarma, P.M., Duraja, P., Deshpande, S., Lal, B., Degradation of pyrene by an enteric bacterium, Leclercia adecarboxylata PS4040 (2009) Biodegradation, 21, pp. 59-69
  • Seo, J.S., Keum, Y.S., Li, Q.X., Bacterial degradation of aromatic compounds (2009) Int. J. Environ. Res. Pub. Health, 6, pp. 278-309
  • Sepic, E., Bricelj, M., Leskovsek, H., Degradation of fluoranthene by Pasteurella sp. IFA and Mycobacterium sp. PYR-1: isolation and identification of metabolites (1998) J. Appl. Microbiol., 85, pp. 746-754
  • Sho, M., Hamel, C., Greer, C.W., Two distinct gene clusters encode pyrene degradation in Mycobacterium sp. strain S65 (2004) FEMS Microbiol. Ecol., 48, pp. 209-220
  • Singleton, D.R., Richardson, S.D., Aitken, M.D., Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil (2011) Biodegradation, 22, pp. 1061-1073
  • Song, X., Xu, Y., Li, G., Zhang, Y., Huang, T., Hu, Z., Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons (2011) Mar. Pollut. Bull., 62, pp. 2122-2128
  • Sutherland, J.B., Detoxification of polycyclic aromatic hydrocarbons by fungi (1992) J. Ind. Microbiol., 9, pp. 53-61
  • Tomás-Gallardo, L., Canosa, I., Santero, E., Camafeita, E., Calvo, E., López, J.A., Floriano, B., Proteomic and transcriptional characterization of aromatic degradation pathways in Rhodoccocus sp. strain TFB (2006) Proteomics, 6, pp. S119-S132
  • Usman, M., Hanna, K., Haderlein, S., Fenton oxidation to remediate PAHs in contaminated soils: a critical review of major limitations and counter-strategies (2016) Sci. Total Environ., 569, pp. 179-190
  • Vandera, E., Samiotaki, M., Parapouli, M., Panayotou, G., Koukkou, A.I., Comparative proteomic analysis of Arthrobacter phenanthrenivorans Sphe3 on phenanthrene, phthalate and glucose (2015) J. Proteom., 113, pp. 73-89
  • Wang, X., Li, X., Li, Y., A modified Coomassie Brilliant Blue staining method at nanogram sensitivity compatible with proteomic analysis (2007) Biotechnol. Lett., 29, pp. 1599-1603
  • Xu, S., Li, W., Zhu, J., Wang, R., Li, Z., Xu, G.-L., Ding, J., Crystal structures of isoorotate decarboxylases reveal a novel catalytic mechanism of 5-carboxyl-uracil decarboxylation and shed light on the search for DNA decarboxylase (2013) Cell Res., 23, p. 1296
  • Zeinali, M., Vossoughi, M., Ardestani, S.K., Degradation of phenanthrene and anthracene by Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic bacterium (2008) J. Appl. Microbiol., 105, pp. 398-406
  • Zhong, Y., Luan, T., Lin, L., Liu, H., Tam, N.F.Y., Production of metabolites in the biodegradation of phenanthrene, fluoranthene and pyrene by the mixed culture of Mycobacterium sp. and Sphingomonas sp (2011) Bioresour. Technol., 102, pp. 2965-2972

Citas:

---------- APA ----------
Bourguignon, N., Irazusta, V., Isaac, P., Estévez, C., Maizel, D. & Ferrero, M.A. (2019) . Identification of proteins induced by polycyclic aromatic hydrocarbon and proposal of the phenanthrene catabolic pathway in Amycolatopsis tucumanensis DSM 45259. Ecotoxicology and Environmental Safety, 175, 19-28.
http://dx.doi.org/10.1016/j.ecoenv.2019.02.071
---------- CHICAGO ----------
Bourguignon, N., Irazusta, V., Isaac, P., Estévez, C., Maizel, D., Ferrero, M.A. "Identification of proteins induced by polycyclic aromatic hydrocarbon and proposal of the phenanthrene catabolic pathway in Amycolatopsis tucumanensis DSM 45259" . Ecotoxicology and Environmental Safety 175 (2019) : 19-28.
http://dx.doi.org/10.1016/j.ecoenv.2019.02.071
---------- MLA ----------
Bourguignon, N., Irazusta, V., Isaac, P., Estévez, C., Maizel, D., Ferrero, M.A. "Identification of proteins induced by polycyclic aromatic hydrocarbon and proposal of the phenanthrene catabolic pathway in Amycolatopsis tucumanensis DSM 45259" . Ecotoxicology and Environmental Safety, vol. 175, 2019, pp. 19-28.
http://dx.doi.org/10.1016/j.ecoenv.2019.02.071
---------- VANCOUVER ----------
Bourguignon, N., Irazusta, V., Isaac, P., Estévez, C., Maizel, D., Ferrero, M.A. Identification of proteins induced by polycyclic aromatic hydrocarbon and proposal of the phenanthrene catabolic pathway in Amycolatopsis tucumanensis DSM 45259. Ecotoxicol. Environ. Saf. 2019;175:19-28.
http://dx.doi.org/10.1016/j.ecoenv.2019.02.071