Artículo

Iummato, M.M.; Sabatini, S.E.; Cacciatore, L.C.; Cochón, A.C.; Cataldo, D.; de Molina, M.D.C.R.; Juárez, Á.B. "Biochemical responses of the golden mussel Limnoperna fortunei under dietary glyphosate exposure" (2018) Ecotoxicology and Environmental Safety. 163:69-75
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The aim of this study was to analyze the biochemical alterations in the golden mussel Limnoperna fortunei under dietary glyphosate exposure. Mussels were fed during 4 weeks with the green algae Scenedesmus vacuolatus previously exposed to a commercial formulation of glyphosate (6 mg L−1 active principle) with the addition of alkyl aryl polyglycol ether surfactant. After 1, 7, 14, 21 and 28 days of dietary exposure, glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), acetylcholinesterase (AChE), carboxylesterases (CES) and alkaline phosphatase (ALP) activities, glutathione (GSH) content and damage to lipids and proteins levels were analyzed. A significant increase (72%) in the GST activity and a significant decrease (26%) in the CES activity in the mussels fed on glyphosate exposed algae for 28 days were observed. The ALP activity was significantly increased at 21 and 28 days of dietary exposure (48% and 72%, respectively). GSH content and CAT, SOD and AchE activities did not show any differences between the exposed and non exposed bivalves. No oxidative damage to lipids and proteins, measured as TBARS and carbonyl content respectively, was observed in response to glyphosate dietary exposure. The decrease in the CES activity and the increases in GST and ALP activities observed in L. fortunei indicate that dietary exposure to glyphosate provokes metabolic alterations, related with detoxification mechanisms. © 2018 Elsevier Inc.

Registro:

Documento: Artículo
Título:Biochemical responses of the golden mussel Limnoperna fortunei under dietary glyphosate exposure
Autor:Iummato, M.M.; Sabatini, S.E.; Cacciatore, L.C.; Cochón, A.C.; Cataldo, D.; de Molina, M.D.C.R.; Juárez, Á.B.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
CONICET, Universidad de Buenos Aires - Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución. CONICET-UBA-Instituto de Ecología, Genética y Evolución (IEGE), Buenos Aires, Argentina
CONICET, Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires, Argentina
CONICET-Universidad Nacional del Comahue - Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA) - Laboratorio de Ecotoxicología Acuática, Neuquén, Argentina
Palabras clave:Bivalve; Detoxifying responses; Food chain; Glyphosate; Limnoperna fortunei; Oxidative stress; acetylcholinesterase; alkaline phosphatase; carboxylesterase; catalase; glutathione; glutathione transferase; glyphosate; superoxide dismutase; acetylcholinesterase; alkaline phosphatase; carboxylesterase; catalase; glutathione; glutathione transferase; glycine; glyphosate; herbicide; superoxide dismutase; thiobarbituric acid reactive substance; biochemistry; bivalve; diet; food chain; glyphosate; lipid; oxidative stress; protein; animal cell; animal experiment; animal tissue; Article; biochemistry; controlled study; detoxification; dietary exposure; enzyme activity; Limnoperna fortunei; lipid analysis; mussel; nonhuman; protein analysis; Scenedesmus; Scenedesmus vacuolatus; analogs and derivatives; animal; diet; drug effect; metabolism; Mytilidae; oxidative stress; sea food; veterinary medicine; algae; Bivalvia; Chlorophyta; Limnoperna fortunei; Scenedesmus vacuolatus; Acetylcholinesterase; Alkaline Phosphatase; Animals; Carboxylic Ester Hydrolases; Catalase; Diet; Glutathione; Glutathione Transferase; Glycine; Herbicides; Mytilidae; Oxidative Stress; Scenedesmus; Seafood; Superoxide Dismutase; Thiobarbituric Acid Reactive Substances
Año:2018
Volumen:163
Página de inicio:69
Página de fin:75
DOI: http://dx.doi.org/10.1016/j.ecoenv.2018.07.046
Título revista:Ecotoxicology and Environmental Safety
Título revista abreviado:Ecotoxicol. Environ. Saf.
ISSN:01476513
CODEN:EESAD
CAS:acetylcholinesterase, 9000-81-1; alkaline phosphatase, 9001-78-9; carboxylesterase, 59536-71-9, 83380-83-0, 9016-18-6, 9028-01-7; catalase, 9001-05-2; glutathione, 70-18-8; glutathione transferase, 50812-37-8; glyphosate, 1071-83-6; superoxide dismutase, 37294-21-6, 9016-01-7, 9054-89-1; glycine, 56-40-6, 6000-43-7, 6000-44-8; Acetylcholinesterase; Alkaline Phosphatase; Carboxylic Ester Hydrolases; Catalase; Glutathione; Glutathione Transferase; Glycine; glyphosate; Herbicides; Superoxide Dismutase; Thiobarbituric Acid Reactive Substances
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01476513_v163_n_p69_Iummato

Referencias:

  • Aanand, S., Purushothaman, C.S., Pal, A.K., Rajendran, K.V., Toxicological studies on the effect of copper, lead and zinc on selected enzymes in the adductor muscle and intestinal diverticula of the green mussel Perna viridis (2010) Indian J. Mar. Sci., 39, pp. 299-302
  • Abdel-Nabi, I.M., El-Shenawy, N.S., Taha, I.A., Moawad, S., Oxidative stress biomarkers and bioconcentration of Reldan and Roundup by the edible clam Ruditapes decussatus (2007) Acta Zool. Sin., 53, pp. 910-920
  • Aebi, H., Catalase in vitro (1984) Method. Enzymol., 105, pp. 121-126
  • Altieri, M.A., Pengue, W., GM soybean: Latin America's new colonizer (2006) Seedling, 1, pp. 13-17
  • Anderson, M.E., Determination of glutathione and glutathione disulfide in biological samples (1985) Method. Enzymol., 113, pp. 548-553
  • Aparicio, V.A., De Gerónimo, E., Hernández Guijarro, K., Pérez, D., Portocarrero, R., Vidal, C., (2015) Los plaguicidas agregados al suelo y su destino en el ambiente, , 1st ed Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires Argentina (74 pp)
  • Beauchamp, C., Fridovich, I., Superoxide dismutase: improved assays and an assay applicable to acrylamide gels (1971) Anal. Biochem., 44, pp. 276-286
  • Belaich, M., Oliver, C., Pilloff, M., Porta, A., Evaluation of a biomarker of Cd(II) exposure on Limnoperna fortunei (2006) Environ. Pollut., 144, pp. 280-288
  • Benbrook, C.M., Trends in glyphosate herbicide use in the United States and globally (2016) Environ. Sci. Eur., 28 (3), pp. 1-15
  • Binelli, A., Provini, A., The PCB pollution of Lake Iseo (N. Italy) and the role of biomagnification in the pelagic food web (2003) Chemosphere, 53, pp. 143-151
  • Bischoff, H.W., Bold, H.C., Phycological studies IV. Some soil algae from Enchanted rock and related algal species (1963) Univ. Tex. Publ., 6318, pp. 1-95
  • Boltovskoy, D., Cataldo, D., Population dynamics of Limnoperna fortunei, an invasive fouling mollusc, in the Lower Parana River (Argentina) (1999) Biofouling, 14, pp. 255-263
  • Boltovskoy, D., Correa, N., Cataldo, D., Sylvester, F., Dispersion and ecological impact of the invasive freshwater bivalve Limnoperna fortunei in the Río de la Plata watershed and beyond (2006) Biol. Invasions, 8, pp. 947-963
  • Bowers, N.G., McComb, R.B., A continuous spectrophotometric method for measuring the activity of serum alkaline phosphatase (1966) Clin. Chem., 12, pp. 70-89
  • Bradford, M.M., A rapid and sensitive method for the quantitation of micrograms quantities utilizing the principle of protein dye binding (1976) Anal. Biochem., 72, pp. 248-254
  • Buege, J.A., Aust, S.D., Microsomal lipid peroxidation (1978) Method. Enzymol., 52, pp. 302-310
  • Castro, J.M., Bianchi, V.A., Pascual, M., Venturino, A., Luquet, C.M., Modulation of immune and antioxidant responses by azinphos-methyl in the freshwater mussel Diplodon chilensis challenged with Escherichia coli (2017) Environ. Toxicol. Chem., 36, pp. 1785-1794
  • (2012), Canadian water quality guidelines for the protection of aquatic life: Glyphosate. In: Canadian Environmental Quality Guidelines, Canadian Council of Ministers of the Environment, Winnipeg; Chi, C., Giri, S.S., Jun, J.W., Kim, H.J., Kim, S.W., Yun, S., Park, S.C., Effects of algal toxin okadaic acid on the non-specific immune andantioxidant response of bay scallop (Argopecten irradians) (2017) Fish. Shellfish Immunol., 65, pp. 111-117
  • Contardo-Jara, V., Klingelmann, E., Wiegand, C., Bioaccumulation of glyphosate and its formulation Roundup Ultra in Lumbricus variegatus and its effects on biotransformation and antioxidant enzymes (2009) Environ. Pollut., 157, pp. 57-63
  • Darrigran, G., Damborenea, C., (2006) Bio-invasión del mejillón dorado en el continente americano, , 1st ed Universidad Nacional de La Plata, La Plata Argentina (226 pp)
  • Darrigran, G., Ezcurra, I., Invasion of the exotic freshwater mussel Limnoperna fortune (Dunker 1857)(Bivalvia, Mytilidae) in South America (2000) Nautilus, 114, pp. 69-73
  • Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M., A new and rapid colorimetric determination of acetylcholinesterase activity (1961) Biochem. Pharmacol., 7, pp. 88-95
  • Galloway, T.S., Millward, N., Browne, M.A., Depledge, M.H., Rapid assessment of organophosphorous/carbamate exposure in the bivalve mollusk Mytilus edulis using combined esterase activities as biomarkers (2002) Aquat. Toxicol., 61, pp. 169-180
  • Güngördü, A., Comparative toxicity of methidathion and glyphosate on early life stages of three amphibian species: Pelophylax ridibundus, Pseudepidalea viridis, and Xenopus laevis (2013) Aquat. Toxicol., 140-141, pp. 220-228
  • Güngördü, A., Uçkunm, M., Yologlu, E., Integrated assessment of biochemical markers in premetamorphic tadpoles of three amphibian species exposed to glyphosate – and methidathion-based pesticides in single and combination forms (2016) Chemosphere, 144, pp. 2024-2035
  • Gupta, R.C., Classification and uses of organophosphates and carbamates (2006) Toxicology of Organophosphate and Carbamate Compounds, pp. 5-24. , R.C. Gupta Elesevier Academic Press Burlington, USA
  • Habig, W., Pabst, M., Jakoby, W., Glutathione S-transferases: the first enzymatic step in mercapturic acid formation (1974) J. Biol. Chem., 249, pp. 7130-7139
  • Iummato, M.M., Impacto del herbicida N-fosfonometil glicina (glifosato) sobre la biota acuática. Estudios en: organismos- cadenas tróficas -comunidad perifiton. (Ph.D. thesis) (2016), http://opac.bl.fcen.uba.ar/opac8/, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Argentina (228 pp); Iummato, M.M., Di Fiori, E., Sabatini, S.E., Cacciatore, L.C., Cochón, A.C., Ríos de Molina, M.C., Juárez, A.B., Evaluation of biochemical markers in the golden mussel Limnoperna fortunei exposed to glyphosate acid in outdoor microcosms (2013) Ecotoxicol. Environ. Saf., 95, pp. 123-129
  • Jokanović, M., Biotransformation of organophosphorus compounds (2001) Toxicology, 166, pp. 139-160
  • Jorgensen, C.B., Bivalve Filter Feeding: Hydrodynamics, Bioenergetics, Physiology and Ecology (1990), p. 140. , Olsen and Olsen Fredensborg; Kalinina, E.V., Chernov, N.N., Novichkova, M.D., Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes (2014) Biochemistry, 79, pp. 1562-1583
  • Kertesz, M.A., Cook, A.M., Leisinger, T., Microbial metabolism of sulfur- and phosphorus-containing xenobiotics (1994) FEMS Microbiol. Rev., 15, pp. 195-215
  • Kristoff, G., Verrengia Guerrero, N.R., Cochón, A.C., Inhibition of cholinesterases and carboxylesterases of two invertebrate species, Biomphalaria glabrata and Lumbriculus variegatus, by the carbamate pesticide carbaryl (2010) Aquat. Toxicol., 96, pp. 115-123
  • Lajmanovich, R.C., Junges, C.M., Attademo, A.M., Peltzer, P.M., Cabagna-Zenklusen, M.C., Basso, A., Individual and mixture toxicity of commercial formulations containing glyphosate, metsulfuron-methyl, bispyribac-sodium, and picloram on Rhinella arenarum tadpoles (2013) Water Air Soil Pollut., 224, pp. 1-13
  • Lipok, J., Studnik, H., Gruyaert, S., The toxicity of Roundup® 360 SL formulation and its main constituents: glyphosate and isopropylamine towards non-target water photoautotrophs (2010) Ecotoxicol. Environ. Saf., 73, pp. 1681-1688
  • Matozzo, V., Fabrello, J., Masiero, L., Ferraccioli, F., Finos, L., Pastore, P., Di Gangi, I.M., Bogialli, S., Ecotoxicological risk assessment for the herbicide glyphosate to non-target aquatic species: a case study with the mussel Mytilus galloprovincialis (2018) Environ. Pollut., 233, pp. 623-632
  • Modesto, K.A., Martinez, C.B.R., Roundup® causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus (2010) Chemosphere, 78, pp. 294-299
  • Mottier, A., Séguin, A., Devos, A., Le Pabic, C., Voiseux, C., Lebel, J.M., Serpentini, A., Costil, K., Effects of subchronic exposure to glyphosate in juvenile oysters (Crassostrea gigas): from molecular to individual levels (2015) Mar. Pollut. Bull., 95, pp. 665-677
  • Neškovic, N.K., Poleksic, V., Elezovic, I., Karan, V., Budimir, M., Biochemical and histopathological effects of glyphosate on carp, Cyprinus carpio L (1996) Bull. Environ. Contam. Toxicol., 56, pp. 295-302
  • Nfon, E., Cousins, I.T., Broman, D., Biomagnification of organic pollutants in benthic and pelagic marine food chains from the Baltic Sea (2008) Sci. Total Environ., 397, pp. 190-204
  • Okay, O.S., Donkin, P., Peters, L.D., Livingstone, D.R., The role of algae (Isochrysis galbana) enrichment on the bioaccumulation of benzo[a]pyrene and its effects on the blue mussel Mytilus edulis (2000) Environ. Pollut., 110, pp. 103-113
  • Ranilalitha, P., Sukumaran, M., Raveendran, S., Effect of TBTCL on phosphatases activity in estuarine edible clam, Anadara rhombea born (Bivalvia: Mollusca) (2014) Int. J. Pure Appl. Zool., 2, pp. 315-320
  • Reznick, A., Packer, L., Oxidative damage to proteins: spectrophotometric method for carbonyl assay (1994) Method. Enzymol., 233, pp. 357-363
  • Romero, D., Ríos de Molina, M.C., Juárez, A.B., Oxidative stress induced by a commercial glyphosate formulation in a tolerant strain of Chlorella kessleri (2011) Ecotoxicol. Environ. Saf., 74, pp. 741-747
  • Ronco, A., Carriquiriborde, P., Natale, G.S., Martin, M., Mugni, H., Bonetto, C., Integrated approach for the assessment of biotech soybean pesticides impact on low order stream ecosystems of the Pampasic Region (2008) Ecosystem Ecology Research Trends., pp. 209-239. , J. Chen C. Guo Nova Science Publisher Inc New York, USA
  • Sancho, J.V., Hernandez, F., Lopez, F.J., Hogendoorn, E.A., Dijkman, E., Rapid determination of glufosinate, glyphosate and aminomethyl phosphonic acid in environmental water samples using precolumn fluorogenic labeling and coupled-column liquid chromatography (1996) J. Chromatogr. A, 737, pp. 75-83
  • Séguin, A., Mottier, A., Perron, C., Lebel, J.M., Serpentini, A., Costil, K., Sub-lethal effects of a glyphosate-based commercial formulation and adjuvants on juvenile oysters (Crassostrea gigas) exposed for 35 days (2017) Mar. Pollut. Bull., 117, pp. 348-358
  • Sergiev, I.G., Alexieva, V.S., Ivanov, S.V., Moskova, I.I., Karanov, E.N., The phenylurea cytokinin 4PU-30 protects maize plants against glyphosate action (2006) Pestic. Biochem. Phys., 85, pp. 139-146
  • Stalikas, C.D., Konidari, C.N., Analytical methods to determine phosphonic and amino acid group containing pesticides (2001) J. Chromatogr. A., 907, pp. 1-19
  • Székács, A., Darvas, B., Forty years with glyphosate (2012) Herbicides - Properties, Synthesis and Control of Weeds, pp. 247-285. , Dr. Mohammed Nagib Hasaneen InTech Rijeka, Croatia
  • Sokal, R.R., Rohlf, F.J., (1999), Introducción a la Bioestadística. Reverté Barcelona, España; Van Bruggen, A.H.C., He, M.M., Shin, K., Mai, V., Jeong, K.C., Finckh, M.R., Morris, J.G., Jr., Environmental and health effects of the herbicide glyphosate (2018) Sci. Total Environ., 616-617, pp. 255-268
  • Van Dyk, J.S., Pletschke, B., Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment (2011) Chemosphere, 82, pp. 291-307
  • Vereecken, H., Mobility and leaching of glyphosate: a review (2005) Pest. Manag. Sci., 61, pp. 1139-1151
  • Warren, N., Allan, I.J., Carter, J.E., House, W.A., Parker, A., Pesticides and other micro-organic contaminants in freshwater sedimentary environments–a review (2003) Appl. Geochem., 18, pp. 159-194
  • Wheelock, C.E., Phillips, B.M., Anderson, B.S., Miller, J.L., Miller, M.J., Hammock, B., Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs) (2008) Rev. Environ. Contam. Toxicol., 195, pp. 117-178
  • (2005), Glyphosate and AMPA in Drinking-Water. WHO/WSH/03.04/97. Geneva, Switzerland

Citas:

---------- APA ----------
Iummato, M.M., Sabatini, S.E., Cacciatore, L.C., Cochón, A.C., Cataldo, D., de Molina, M.D.C.R. & Juárez, Á.B. (2018) . Biochemical responses of the golden mussel Limnoperna fortunei under dietary glyphosate exposure. Ecotoxicology and Environmental Safety, 163, 69-75.
http://dx.doi.org/10.1016/j.ecoenv.2018.07.046
---------- CHICAGO ----------
Iummato, M.M., Sabatini, S.E., Cacciatore, L.C., Cochón, A.C., Cataldo, D., de Molina, M.D.C.R., et al. "Biochemical responses of the golden mussel Limnoperna fortunei under dietary glyphosate exposure" . Ecotoxicology and Environmental Safety 163 (2018) : 69-75.
http://dx.doi.org/10.1016/j.ecoenv.2018.07.046
---------- MLA ----------
Iummato, M.M., Sabatini, S.E., Cacciatore, L.C., Cochón, A.C., Cataldo, D., de Molina, M.D.C.R., et al. "Biochemical responses of the golden mussel Limnoperna fortunei under dietary glyphosate exposure" . Ecotoxicology and Environmental Safety, vol. 163, 2018, pp. 69-75.
http://dx.doi.org/10.1016/j.ecoenv.2018.07.046
---------- VANCOUVER ----------
Iummato, M.M., Sabatini, S.E., Cacciatore, L.C., Cochón, A.C., Cataldo, D., de Molina, M.D.C.R., et al. Biochemical responses of the golden mussel Limnoperna fortunei under dietary glyphosate exposure. Ecotoxicol. Environ. Saf. 2018;163:69-75.
http://dx.doi.org/10.1016/j.ecoenv.2018.07.046