Artículo

Lozano, V.L.; Vinocur, A.; Sabio y García, C.A.; Allende, L.; Cristos, D.S.; Rojas, D.; Wolansky, M.; Pizarro, H. "Effects of glyphosate and 2,4-D mixture on freshwater phytoplankton and periphyton communities: a microcosms approach" (2018) Ecotoxicology and Environmental Safety. 148:1010-1019
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Glyphosate (G) and 2,4-D herbicides are massively applied in agriculture worldwide and the use of their mixture is currently a very common practice. We carried out two experiments using microcosms under laboratory conditions for 7 days each. In the first experiment, we analyzed changes in species composition, abundance and chlorophyll a of phytoplankton due to 10 treatments: control; low, medium and high concentrations of G and 2,4-D; and mixtures at low, medium and high concentrations at a G:2,4-D ratio of 1:0.45. In the second experiment we studied changes on the composition of the autotrophic fraction and abundance, chlorophyll a, dry weight (DW), ash free dry weight (AFDW) and autotrophic index of periphyton developed in artificial substrata under 7 treatments considering the lowest doses that showed an effect in the previous phytoplankton experiment: control; pure G and Glifosato Atanor® (glyphosate-based formulation); pure 2,4-D and Asi Max 50® (2,4-D-based formulation); mixtures of the a.i at a G:2,4-D ratio of 1:0.45, and mixture of Glifosato Atanor® + Asi Max®. Results showed that G was more toxic than 2,4-D to the algal fraction, decreasing chlorophyll a, turbidity and algal abundances in the phytoplankton experiment. The effects of the mixture on phytoplankton were mainly additive, except for total and Staurastrum sp. live abundances where an antagonistic effect between herbicides was recorded. Periphyton showed more resistance to the herbicides as it was less affected than phytoplankton by the active ingredients and commercial formulations. The high development of Leptolyngbya sp. due to the impact of the herbicide mixture on periphyton might represent the beginning of a more conspicuous community to prevent the impact of contaminants. The study of the impacts of herbicide mixtures on freshwater systems requires the analysis of several variables to better assess the responses of key microbial communities and to predict more realistic scenarios. © 2017 Elsevier Inc.

Registro:

Documento: Artículo
Título:Effects of glyphosate and 2,4-D mixture on freshwater phytoplankton and periphyton communities: a microcosms approach
Autor:Lozano, V.L.; Vinocur, A.; Sabio y García, C.A.; Allende, L.; Cristos, D.S.; Rojas, D.; Wolansky, M.; Pizarro, H.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. Ecología, Genética y Evolución, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, FCEyN-UBA, Argentina
Instituto del Conurbano, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina
Instituto Nacional de Tecnología Agropecuaria, Instituto de Tecnología de Alimentos, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
Palabras clave:2,4-D; Freshwater; Glyphosate; Mixture; Periphyton; Phytoplankton; 2,4 dichlorophenoxyacetic acid; chlorophyll a; glyphosate; community dynamics; glyphosate; herbicide; microbial community; microcosm; periphyton; phytoplankton; alga; Article; autotrophy; concentration (parameters); controlled study; dry weight; ecotoxicity; microbial community; microcosm; nonhuman; periphyton; physical resistance; phytoplankton; population abundance; species composition; Staurastrum; turbidity; algae; Leptolyngbya sp.; Staurastrum
Año:2018
Volumen:148
Página de inicio:1010
Página de fin:1019
DOI: http://dx.doi.org/10.1016/j.ecoenv.2017.12.006
Título revista:Ecotoxicology and Environmental Safety
Título revista abreviado:Ecotoxicol. Environ. Saf.
ISSN:01476513
CODEN:EESAD
CAS:2,4 dichlorophenoxyacetic acid, 2702-72-9, 94-75-7; chlorophyll a, 479-61-8; glyphosate, 1071-83-6
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01476513_v148_n_p1010_Lozano

Referencias:

  • Allende, L., Tell, G., Zagarese, H., Torremorell, A., Pérez, G., Bustingorry, J., Escaray, R., Izaguirre, I., Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the pampa plain (Argentina) (2009) Hydrobiologia, 624 (1), pp. 45-60
  • American Public Health Association, Standard methods for the examination of water and wastewaters (2005), 21st edn APHA, American Water Works Association, Water Environmental Federation Washington, DC; Annett, R., Habibi, H.R., Hontela, A., Impact of glyphosate and glyphosate-based herbicides on the freshwater environment (2014) J. Appl. Toxicol., 34, pp. 458-479
  • Aparicio, V., De Gerónimo, E., Guijarro, K.H., Pérez, D., Portocarrero, R., Vidal, C., Los plaguicidas agregados al suelo y su destino en el ambiente (2015) INTA Ediciones Argent., pp. 1-74
  • Azim, M.E., Asaeda, T., Periphyton structure, diversity and colonization (2005) Periphyton: Ecology, Exploitation and Management, pp. 15-34. , M.E. Azim et al. (eds.) CABI Publ. Oxfordshire Cambridge
  • Bonilla, S., Conde, D., Blanck, H., The photosynthetic responses of marine phytoplankton, periphyton and epipsammon to the herbicides paraquat and simazine (1998) Ecotoxicology, 7 (2), pp. 99-105
  • Bonny, S., Genetically modified herbicide-tolerant crops, weeds, and herbicides: overview and impact (2016) Environ. Manag., 57 (1), pp. 31-48
  • Boyle, T.P., Effects of the aquatic herbicide 2,4-D DMA on the ecology of experimental ponds (1980) Environ. Pollut. Ser. A Ecol. Biol., 21 (1), pp. 35-49
  • Dangavs, N.V., Los ambientes acuáticos de la provincia de Buenos Aires. Relatorio del XVI Congreso Geológico Argentino (2005); Faust, M., Altenburger, R., Backhaus, T., Blanck, H., Boedeker, W., Gramatica, P., Hamer, V., Grimme, L.H., Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants (2001) Aquat. Toxicol., 56 (1), pp. 13-32
  • Flemming, H.C., Wingender, J., The biofilm matrix (2010) Nat. Rev. Microbiol., 8 (9), pp. 623-633
  • Forlani, G., Pavan, M., Gramek, M., Kafarski, P., Lipok, J., Biochemical bases for a widespread tolerance of cyanobacteria to the phosphonate herbicide glyphosate (2008) Plant Cell Physiol., 49 (3), pp. 443-456
  • Geyer, R.L., Smith, G.R., Retting, J.E., Effects of Roundup formulations, nutrient addition, and Western mosquitofish (Gambusia affinis) on aquatic communities (2016) Environ. Sci. Pollut. Res. Int., 23 (12), p. 11729
  • Green, J.M., The rise and future of glyphosate and glyphosate‐resistant crops (2016) Pest Manag. Sci., 68 (10), pp. 1323-1331
  • Kobraei, M.E., White, D.S., Effects of 2,4-dichlorophenoxyacetic acid on Kentucky algae: simultaneous laboratory and field toxicity testings (1996) Arch. Environ. Contam. Toxicol., 31 (4), pp. 571-580
  • Lilchtenthaler, H.K., Wellburn, A.R., Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents (1983) Biochem. Soc. Trans., 11 (5), pp. 591-592
  • Lipok, J., Studnik, H., Guyaert, S., The toxicity of Roundup® 360 SL formulation and its main constituents: glyphosate and isopropylamine towards non-target water photoautrotrophs (2010) Ecotoxicol. Environ. Saf., 73, pp. 1681-1688
  • Lowe, R., Pan, Y., Benthic algal communities as biological monitors (1996) Algal Ecol.: Freshwater Benthic Ecosyst., pp. 705-739
  • Magbanua, F.S., Townsend, C.R., Hageman, K.J., Lange, K., Lear, G., Lewis, G.D., Matthaei, C.D., Understanding the combined influence of fine sediment and glyphosate herbicide on stream periphyton communities (2013) Water Res., 47 (14), pp. 5110-5120
  • Mensah, P.K., Palmer, C.G., Muller, W.J., Derivation of South African water quality guidelines for Roundup® using species sensitivity distribution (2013) Ecotoxicol. Environ. Saf., 96, pp. 24-31
  • Metzler, M.J., Puricelli, E., Peltzer, H.F., (2011), pp. 138-140. , Control de Conyza spp. (rama negra) en barbecho de soja con glifosato en mezcla con herbicidas residuales y de contacto. In: Acta del Quinto Congreso de la Soja del Mercosur. Primer Foro de la Soja Asia-Mercosur; Oliver, T.H., Heard, M.S., Isaac, N.J., Roy, D.B., Procter, D., Eigenbrod, F., Freckleton, R., Raffaelli, D., Biodiversity and resilience of ecosystem functions (2015) Trends Ecol. Evol., 30 (11), pp. 673-684
  • Pérez, D.J., Okada, E., De Gerónimo, E., Menone, M.L., Aparicio, V.C., Costa, J.L., Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina (2017) Environ. Toxicol. Chem., 9999 (9999), pp. 1-11
  • Pérez, G.L., Torremorell, A., Mugni, H., Rodríguez, P., Vera, M.S., Do Nascimento, M., Allende, L., Zagarese, H., Effect of the herbicide roundup on freshwater microbial communities: a mesocosm study (2007) Ecol. Appl., 17 (8), pp. 2310-2322
  • Peruzzo, P.J., Porta, A.A., Ronco, A.E., Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina (2008) Environ. Pollut., 156 (1), pp. 61-66
  • Piggott, J.J., Townsend, C.R., Matthaei, C.D., Reconceptualizing synergism and antagonism among multiple stressors (2015) Ecol. Evol., 5 (7), pp. 1538-1547
  • Pizarro, H., Vera, M.S., Vinocur, A., Pérez, G., Ferraro, M., Helman, R.M., dos Santos Afonso, M., Glyphosate input modifies microbial community structure in clear and turbid freshwater systems (2015) Environ. Sci. Pollut. Res., 23 (6), pp. 5143-5153
  • Pollegioni, L., Schonbrunn, E., Siehl, D., Molecular basis of glyphosate resistance–different approaches through protein engineering (2011) FEBS J., 278 (16), pp. 2753-2766
  • Pórfido, O.D., Butler, E., de Titto, E., Issaly, P., Benítez, R., Los plaguicidas en la República Argentina (2014), 14, p. 193. , Ministerio de Salud, Departamento de Salud Ambiental, Serie Temas de Salud Ambiental; Quirós, R., Drago, E., The environmental state of Argentinean lakes: an overview (1999) Lakes Reserv.: Res. Manag., 4, pp. 55-64
  • Quirós, R., Renella, A.M., Boveri, M.B., Rosso, J., Sosnovsky, A., Factores que afectan la estructura y el funcionamiento de las lagunas pampeanas (2002) Ecol. Austral, 12, pp. 175-185
  • Quirós, R., Boveri, M.B., Petracchi, C.A., Rennella, A.M., Rosso, J.J., Sosnovsky, A., Von Bernard, H., The effects of the pampa wetlands agriculturization on shallow lakes eutrophication. Eutrofizaçãon a América do Sul: Causas, conseqüências e tecnologias de gerenciamento e controle (2006) Inst. Int. Ecol., pp. 1-16
  • Relyea, R.A., A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities (2009) Oecologia, 159 (2), pp. 363-376
  • Richards, T.A., Dacks, J.B., Campbell, S.A., Blanchard, J.L., Foster, P.G., McLeod, R., Roberts, C.W., Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements (2006) Eukaryot. Cell., 5 (9), pp. 1517-1531
  • Rohr, J.R., Kerby, J.L., Sih, A., Community ecology as a framework for predicting contaminant effects (2006) Trends Ecol. Evol., 21 (11), pp. 606-613
  • Sánchez, M.L., Lagomarsino, L., Allende, L., Izaguirre, I., Changes in the phytoplankton structure in a Pampean shallow lake in the transition from a clear to a turbid regime (2015) Hydrobiologia, 752, pp. 65-76
  • Saxton, M.A., Morrow, E.A., Bourbonniere, R.A., Wilhelm, S.W., Glyphosate influence on phytoplankton community structure in Lake Erie (2011) J. Gt. Lakes Res., 37 (4), pp. 683-690
  • Scanlon, B.R., Jolly, I., Sophocleous, M., Zhang, L., Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality (2007) Water Resour. Res., 43 (3), p. W03437
  • Scheffer, M., Hosper, S.H., Meijer, M.L., Moss, B., Jeppesen, E., Alternative equilibria in shallow lakes (1993) Trends Ecol. Evol., 8, pp. 275-279
  • Seguin, F., Leboulanger, C., Rimet, F., Druart, J.C., Bérard, A., Effects of atrazine and nicosulfuron on phytoplankton in systems of increasing complexity (2001) Arch. Environ. Contam. Toxicol., 40 (2), pp. 198-208
  • Seiber, J.N., Environmental Fate of Pesticides (2002), pp. 127-161. , Marcel Dekker New York; SENASA, (2017), Importación de Fitoterapicos 2013, 2014, data on website., 2015; Singh, P.K., Shrivastava, A.K., Role of initial cell density of algal bioassay of toxic chemicals (2016) J. Basic Microbiol., 56 (7), pp. 812-819
  • Song, Y., Insight into the mode of action of 2,4‐dichlorophenoxyacetic acid (2,4‐D) as an herbicide (2014) J. Integr. Plant Biol., 56 (2), pp. 106-113
  • Sura, S., Waiser, M., Tumber, V., Lawrence, J.R., Cessna, A.J., Glozier, N., Effects of glyphosate and two herbicide mixtures on microbial communities in prairie wetland ecosystems: a mesocosm approach (2012) J. Environ. Qual., 41 (3), pp. 732-743
  • Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., Schindler, D., Swackhamer, D., Forecasting agriculturally driven global environmental change (2001) Science, 292 (5515), pp. 281-284
  • Tohge, T., Watanabe, M., Hoefgen, R., Fernie, A.R., Shikimate and phenylalanine biosynthesis in the green lineage (2013) Front. Plant Sci., 4, p. 62
  • US EPA, (2005) Reregistration Eligibility Decision (RED) 2,4-D (EPA 738-R-05-002), , Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office Washington, DC
  • US, E.P., (2017), https://www.epa.gov/ingredients-used-pesticide-products/registration-enlist-duo, A. Registration of Enlist Duo|US EPA. [online] Available at: (Accessed 14 July 2017); Utermöhl, H., Zurvervollkommung der quantitativen phytoplankton Methodik (1958) Int. Assoc. Theor. Appl. Limnol., 9, pp. 1-38
  • Venrick, E.L., Systematic sampling in a planktonic ecosystem (1978) Fish. Bull., 76 (3), pp. 617-627
  • Vera, M.S., Di Fiori, E., Lagomarsino, L., Sinistro, R., Escaray, R., Iummato, M.M., Juárez, A., Pizarro, H., Direct and indirect effects of the glyphosate formulation Glifosato Atanor® on freshwater microbial communities (2012) Ecotoxicology, 21, pp. 1805-1816
  • Vera, M.S., Juárez, Á.B., Pizarro, H.N., Comparative effects of technical-grade and a commercial formulation of glyphosate on the pigment content of periphytic algae (2014) Bull. Environ. Contam. Toxicol., 93 (4), pp. 399-404
  • Vincent, W.F., Castenholz, R.W., Downes, M.T., Howard‐Williams, C., Antartic cyanobacteria: light, nutrients, and photosynthesis in the microbial mat environment (1993) J. Phycol., 29 (6), pp. 745-755
  • Wang, C., Lin, X., Li, L., Lin, S., Differential growth responses of marine phytoplankton to herbicide glyphosate (2016) PLoS One, 11 (3), p. e0151633
  • Weissgerber, T.L., Milic, N.M., Winham, S.J., Garovic, V.D., Beyond bar and line graphs: time for a new data presentation paradigm (2015) PLoS Biol., 13 (4), p. e1002128
  • Wetzel, R.G., Opening Remarks. Periphyton of Freshwater Ecosystems (1983), pp. 3-4. , Dr. W. Junk Publishers The Hage, Netherlands; Wong, P.K., Effects of 2,4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll-a synthesis of Scenedesmus quadricauta Berb 614 (2000) Chemosphere, 41 (1-2), pp. 177-182
  • Wood, R.J., Mitrovic, S.M., Lim, R.P., Kefford, B.J., How benthic diatoms within natural communities respond to eight common herbicides with different modes of action (2016) Sci. Total Environ., 557, pp. 636-643
  • Zhu, X., Sun, Y., Zhang, X., Heng, H., Nan, H., Zhang, L., Huang, Y., Yang, Z., Herbicides interfere with antigrazer defenses in Scenedesmus obliquus (2016) Chemosphere, 162, pp. 243-251

Citas:

---------- APA ----------
Lozano, V.L., Vinocur, A., Sabio y García, C.A., Allende, L., Cristos, D.S., Rojas, D., Wolansky, M.,..., Pizarro, H. (2018) . Effects of glyphosate and 2,4-D mixture on freshwater phytoplankton and periphyton communities: a microcosms approach. Ecotoxicology and Environmental Safety, 148, 1010-1019.
http://dx.doi.org/10.1016/j.ecoenv.2017.12.006
---------- CHICAGO ----------
Lozano, V.L., Vinocur, A., Sabio y García, C.A., Allende, L., Cristos, D.S., Rojas, D., et al. "Effects of glyphosate and 2,4-D mixture on freshwater phytoplankton and periphyton communities: a microcosms approach" . Ecotoxicology and Environmental Safety 148 (2018) : 1010-1019.
http://dx.doi.org/10.1016/j.ecoenv.2017.12.006
---------- MLA ----------
Lozano, V.L., Vinocur, A., Sabio y García, C.A., Allende, L., Cristos, D.S., Rojas, D., et al. "Effects of glyphosate and 2,4-D mixture on freshwater phytoplankton and periphyton communities: a microcosms approach" . Ecotoxicology and Environmental Safety, vol. 148, 2018, pp. 1010-1019.
http://dx.doi.org/10.1016/j.ecoenv.2017.12.006
---------- VANCOUVER ----------
Lozano, V.L., Vinocur, A., Sabio y García, C.A., Allende, L., Cristos, D.S., Rojas, D., et al. Effects of glyphosate and 2,4-D mixture on freshwater phytoplankton and periphyton communities: a microcosms approach. Ecotoxicol. Environ. Saf. 2018;148:1010-1019.
http://dx.doi.org/10.1016/j.ecoenv.2017.12.006