Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The cell wall polysaccharides of Regina and Sunburst cherry varieties at two developmental stages were extracted sequentially, and their changes in monosaccharide composition and functional properties were studied. The loosely-attached pectins presented a lower d-galacturonic acid/rhamnose ratio than ionically-bound pectins, as well as lower thickening effects of their respective 2% aqueous solution: the lowest Newtonian viscosity and shear rate dependence during the pseudoplastic phase. The main constituents of the cell wall matrix were covalently bound pectins (probably through diferulate cross-linkings), with long arabinan side chains at the RG-I cores. This pectin domain was also anchored into the XG-cellulose elastic network. Ripening occurred with a decrease in the proportion of HGs, water extractable GGM and xylogalacturonan, and with a concomitant increase in neutral sugars. Ripening was also associated with higher viscosities and thickening effects, and to larger distribution of molecular weights. The highest firmness and compactness of Regina cherry may be associated with its higher proportion of calcium-bound HGs localized in the middle lamellae of cell walls, as well as to some higher molar proportion of NS (Rha and Ara) in covalently bound pectins. These pectins showed significantly better hydration properties than hemicellulose and cellulose network. Chemical composition and functional properties of cell wall polymers were dependent on cherry variety and ripening stage, and helped explain the contrasting firmness of Regina and Sunburst varieties. © 2012 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages
Autor:Basanta, M.F.; De Escalada Plá, M.F.; Stortz, C.A.; Rojas, A.M.
Filiación:Departamento de Química Orgánica-CIHIDECAR, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Cell wall biopolymers; Firmness; Functional properties; Polysaccharides; Ripening; Sweet cherry; Cell walls; Firmness; Functional properties; Ripening; Sweet cherries; Biopolymers; Cellulose; Cytology; Glucose; Mercury compounds; Polymers; Polysaccharides; Viscosity; Cells; carbohydrate; cellulose; galacturonic acid; hexuronic acid; pectin; polymer; polysaccharide; rhamnose; article; cell wall; chemistry; fruit; growth, development and aging; isolation and purification; Prunus; viscosity; Carbohydrates; Cell Wall; Cellulose; Fruit; Hexuronic Acids; Pectins; Polymers; Polysaccharides; Prunus; Rhamnose; Viscosity; Ara; Prunus avium; Pseudobahia
Año:2013
Volumen:92
Número:1
Página de inicio:830
Página de fin:841
DOI: http://dx.doi.org/10.1016/j.carbpol.2012.09.091
Título revista:Carbohydrate Polymers
Título revista abreviado:Carbohydr Polym
ISSN:01448617
CODEN:CAPOD
CAS:cellulose, 61991-22-8, 68073-05-2, 9004-34-6; galacturonic acid, 14982-50-4, 685-73-4; pectin, 9000-69-5; rhamnose, 10485-94-6, 3615-41-6; Carbohydrates; Cellulose, 9004-34-6; Hexuronic Acids; Pectins; Polymers; Polysaccharides; Rhamnose, 10485-94-6; galacturonic acid, 4JK6RN80GF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01448617_v92_n1_p830_Basanta

Referencias:

  • Andrews, P.K., Shulin, L., Cell wall hydrolytic enzyme activity during development of nonclimateric sweet cherry (Prunus avium L.) fruit (1995) Journal of Horticultural Science, 70, pp. 561-567
  • Barrett, D.M., Gonzalez, C., Activity of softening enzymes during cherry maturation (1994) Journal of Food Science, 59, pp. 574-577
  • Basanta, M.F., Ponce, N.M.A., Rojas, A.M., Stortz, C.A., Effect of extraction time and temperature on the characteristics of loosely bound pectins from Japanese plum (2012) Carbohydrate Polymers, 89, pp. 230-235
  • Batisse, C., Buret, M., Coulomb, P.J., Biochemical differences in cell wall of cherry fruit between soft and crisp fruit (1996) Journal of Agricultural and Food Chemistry, 44, pp. 453-457
  • Brett, C.T., Waldron, K.W., (1996) The Physiology and Biochemistry of Plant Cell Walls, , second edition Chapman & Hall London, UK pp. 26-32
  • Brown, J.A., Fry, S.C., Novel O-d-galacturonyl esters in the pectic polysaccharides of suspension-cultured plant cells (1993) Plant Physiology, 103, pp. 993-999
  • Brummell, D.A., Dal Cin, V., Crisosto, C.H., Labavitch, J.M., Cell wall metabolism during maturation, ripening and senescence of peach fruit (2004) Journal of Experimental Botany, 55, pp. 2029-2039
  • Bunzel, M., Ralph, J., Marita, J., Stainhart, H., Identification of 4-O-5′ coupled diferulic acid from insoluble cereal fiber (2000) Journal of Agricultural and Food Chemistry, 48, pp. 3166-3169
  • Cadden, A.M., Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers (1987) Journal of Food Science, 52, pp. 1595-1599
  • Cameron, R.G., Luzio, G.A., Vasu, P., Savary, B.J., Williams, M.A.K., Enzymatic modification of a model homogalacturonan with the thermally tolerant pectin methylesterase from citrus: 1. Nanostructural characterization, enzyme mode of action, and effect of pH (2011) Journal of Agricultural and Food Chemistry, 59, pp. 2717-2724
  • Chanliaud, E., Burrows, K.M., Jeronimidis, G., Gidley, M.J., Mechanical properties of primary plant cell wall analogues (2002) Planta, 215, pp. 989-996
  • Chantaro, P., Devahastin, S., Chiewchan, N., Production of antioxidant high dietary fiber powder from carrot peels (2008) LWT-Food Science and Technology, 41, pp. 1987-1994
  • Chen, J.Y., Piva, M., Labuza, T.P., Evaluation of water binding capacity (WBC) of food fiber sources (1984) Journal of Food Science, 49, pp. 59-63
  • Cittadini, E.D., (2007) Sweet Cherries from the End of the World: Options and Constraints for Fruit Production Systems in South Patagonia, Argentina, , Ph.D. thesis, Wageningen University, Holland
  • De Escalada Pla, M.F., Ponce, N.M.A., Stortz, C.A., Rojas, A.M., Gerschenson, L.N., Composition and functional properties of enriched fibre products obtained from pumpkin (Cucurbita moschata, Duchesne ex Poiret) (2007) LWT-Food Science and Technology, 40, pp. 1176-1185
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., Colorimetric method for determination of sugars and related substances (1956) Analytical Chemistry, 28, pp. 350-356
  • Figuerola, F., Hurtado, M.L., Estévez, A.M., Chiffelle, I., Asenjo, F., Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment (2005) Food Chemistry, 91, pp. 395-401
  • Filisetti-Cozzi, T.M.C.C., Carpita, N.C., Measurement of uronic acids without interference from neutral sugars (1991) Analytical Biochemistry, 197, pp. 157-162
  • Fils-Lycaon, B., Buret, M., Loss of firmness and changes in pectic fractions during ripening and overripening of sweet cherry (1990) HortScience, 25, pp. 777-778
  • Fry, S.C., Cross-linking of matrix polymers in the growing cell walls of angiosperms (1986) Annual Review of Plant Physiology, 37, pp. 165-186
  • Guillotin, S.E., Bakx, E.J., Boulenguer, P., Mazoyer, J., Schols, H.A., Voragen, A.G.J., Populations having different GalA blocks characteristics are present in commercial pectins which are chemically similar but have different functionalities (2005) Carbohydrate Polymers, 60, pp. 391-398
  • Jarvis, M.C., Plant cell walls: Supramolecular assemblies (2011) Food Hydrocolloids, 25, pp. 257-262
  • Jones, L., Milne, J.L., Ashford, D., McQueen-Mason, S.J., Cell wall arabinan is essential for guard cell function (2003) Proceedings of the National Academy of Sciences of the United States of America, 100, pp. 11783-11788
  • Karadaǧ, E., Üzüm, Ö., Saraydin, D., Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels (2002) European Polymer Journal, 38, pp. 2133-2141
  • Kim, C., Yoo, B., Rheological properties of rice starch-xhantan gum mixtures (2006) Journal of Food Engineering, 75, pp. 120-128
  • Koh, T.H., Melton, L.D., Ripening-related changes in cell wall polysaccharides of strawberry cortical and pith tissues (2002) Postharvest Biology and Technology, 26, pp. 23-33
  • Kondo, S., Danjo, C., Cell wall polysaccharide metabolism during fruit development in sweet cherry 'Satohnishhiki' as affected by gibberellic acid (2001) Journal of the Japanese Society of Horticultural Science, 70, pp. 178-184
  • Lapasin, R., Pricl, S., (1995) Rheology of Industrial Polysaccharides. Theory and Applications, , Blackie Academic and Professional, Chapman & Hall Glasgow, UK pp. 85-103
  • Lefebvre, J., Doublier, J.L., Rheological behavior of polysaccharides aqueous systems (2005) Polysaccharides: Structural Diversity and Functional Diversity, pp. 357-394. , S. Dumitriu, Marcel Dekker New York, USA
  • Marry, M., Roberts, K., Jopson, S.J., Huxham, I.M., Jarvis, M.C., Corsar, J., Cell-cell adhesion in fresh sugar-beet root parenchyma requires both pectin esters and calcium cross-links (2006) Physiologia Plantarum, 126, pp. 243-256
  • Mattheis, J., Fellman, J., Cherry (Sweet) (2004) The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks, , K.C. Gross, C.Y. Wang, M. Saltveit, USDA, ARS. Agriculture Handbook Number 66 Beltsville, USA
  • Mittal, A., Katahira, R., Himmel, M.E., Johnson, D.K., Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: Changes in crystalline structure and effects on enzymatic digestibility (2011) Biotechnology for Biofuels, 4, pp. 41-57
  • Moore, J.P., Farrant, J.M., Driouich, A., A role for pectin-associated arabinans in maintaining the flexibility of the plant cell wall during water deficit stress (2008) Plant Signaling and Behavior, 3, pp. 102-104
  • Morris, E.R., Cutler, A.N., Ross-Murphy, S.B., Rees, D.A., Price, J., Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions (1981) Carbohydrate Polymers, 1, pp. 5-21
  • Morris, G.A., Ralet, M.C., Bonnin, E., Thibault, J.F., Harding, S.E., Physical characterisation of the rhamnogalacturonan and homogalacturonan fractions of sugar beet (Beta vulgaris) pectin (2010) Carbohydrate Polymers, 82, pp. 1161-1167
  • Ng, A., Parr, A.J., Ingham, L.M., Rigby, N.M., Waldron, K.W., Cell wall chemistry of carrots (Daucus carota cv, Amstrong) during maturation and storage (1998) Journal of Agricultural and Food Chemistry, 46, pp. 2933-2939
  • Peña, M.J., Carpita, N.C., Loss of highly branched arabinans and debranching of rhamnogalacturonan i accompany loss of firm texture and cell separation during prolonged storage of apples (2004) Plant Physiology, 135, pp. 1305-1313
  • Pilosof, A.M., Propiedades de hidratación (2000) Caracterización Funcional y Estructural de Proteínas, pp. 17-29. , A.M. Pilosof, G.B. Bartholomai, EUDEBA Buenos Aires, Argentina
  • Ponce, N.M.A., Ziegler, V.H., Stortz, C.A., Sozzi, G.O., Compositional changes in cell wall polysaccharides from Japanese plum (Prunus salicina Lindl.) during growth and on-tree ripening (2010) Journal of Agricultural and Food Chemistry, 58, pp. 2562-2570
  • Raghavendra, S.N., Rastogi, N.K., Raghavarao, K.S.M.S., Tharanathan, R.N., Dietary fiber from coconut residue: Effects of different treatments and particle size on the hydration properties (2004) European Food Research and Technology, 218, pp. 563-567
  • Robertson, J.A., Monredon, F.D., Dysseler, P., Guillon, F., Amadó, R., Hydration properties of dietary fiber and resistant starch: A European collaborative study (2000) LWT-Food Science and Technology, 33, pp. 72-79
  • Rose, J.C., Bennett, A.B., Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: Parallels between cell expansion and fruit ripening (1999) Trends in Plant Science, 4, pp. 176-183
  • Rosli, H.G., Civello, P.M., Martínez, G.A., Changes in cell wall composition of three Fragaria × ananassa cultivars with different softening rate during ripening (2004) Plant Physiology and Biochemistry, 42, pp. 823-831
  • Ross-Murphy, S.B., Rheological methods (1994) Physical Techniques for the Study of Food Biopolymers, pp. 343-393. , S.B. Ross-Murphy, Blackie Academic and Professional, Chapman & Hall Glasgow, UK
  • Schröder, R., Wegrzyn, T.F., Bolitho, K.M., Redgwell, R.J., Mannan transglycosylase: A novel enzyme activity in cell walls of higher plants (2004) Planta, 219, pp. 590-600
  • Shui, G., Leong, L.P., Residue from star fruit as valuable source for functional food ingredients and antioxidant nutraceuticals (2006) Food Chemistry, 97, pp. 277-284
  • Toivonen, P.M.A., Brummell, D.A., Biochemical bases of appearance and texture in fresh-cut fruit and vegetables (2008) Postharvest Biology and Technology, 48, pp. 1-14
  • (2011) Stone Fruit: World Markets and Trade Foreign Agricultural Services, , http://www.fas.usda.gov/htp/2011StoneFruit.pdf, USDA September
  • Vetter, S., Kunzek, H., The influence of suspension solution conditions on the rehydration of apple cell wall material (2003) European Food Research and Technology, 216, pp. 39-45
  • Vincken, J.P., Schols, H.A., Oomen, R.J.F.J., McCann, M.C., Ulvskov, P., Voragen, A.G.J., If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture (2003) Plant Physiology, 132, pp. 1781-1789
  • Willats, W.G.T., Knox, J.P., Mikkelsen, D., Pectin: New insights into an old polymer are starting to gel (2006) Trends in Food Science and Technology, 17, pp. 97-104
  • Wood, P.J., Siddiqui, I.R., Determination of methanol and its application for measurement of pectin ester content and pectin methyl esterase activity (1971) Analytical Biochemistry, 39, pp. 418-428
  • Zsivanovits, G., MacDougall, A.J., Smith, A.C., Ring, S.G., Material properties of concentrated pectin networks (2004) Carbohydrate Research, 339, pp. 1317-1322

Citas:

---------- APA ----------
Basanta, M.F., De Escalada Plá, M.F., Stortz, C.A. & Rojas, A.M. (2013) . Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages. Carbohydrate Polymers, 92(1), 830-841.
http://dx.doi.org/10.1016/j.carbpol.2012.09.091
---------- CHICAGO ----------
Basanta, M.F., De Escalada Plá, M.F., Stortz, C.A., Rojas, A.M. "Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages" . Carbohydrate Polymers 92, no. 1 (2013) : 830-841.
http://dx.doi.org/10.1016/j.carbpol.2012.09.091
---------- MLA ----------
Basanta, M.F., De Escalada Plá, M.F., Stortz, C.A., Rojas, A.M. "Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages" . Carbohydrate Polymers, vol. 92, no. 1, 2013, pp. 830-841.
http://dx.doi.org/10.1016/j.carbpol.2012.09.091
---------- VANCOUVER ----------
Basanta, M.F., De Escalada Plá, M.F., Stortz, C.A., Rojas, A.M. Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages. Carbohydr Polym. 2013;92(1):830-841.
http://dx.doi.org/10.1016/j.carbpol.2012.09.091