Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nanocomposite materials based on a starch matrix reinforced with very small amounts of multi-walled carbon nanotubes (MWCNTs) (from 0.005 wt% to 0.055 wt%) were developed. The material's dynamic-mechanical and water vapor permeability properties were investigated. An increasing trend of storage modulus (E′) and a decreasing trend of water vapor permeability (WVP) with filler content were observed at room temperature. For the composite with 0.055 wt% of filler, E′ value was about 100% higher and WVP value was almost 43% lower than the corresponding matrix values. MWCNTs were wrapped in an aqueous solution of a starch-iodine complex before their incorporation into the matrix, obtaining exceptionally well-dispersed nanotubes and optimizing interfacial adhesion. This excellent filler dispersion leads to the development of an important contact surface area with the matrix material, producing remarkable changes in the starch-rich phase glass transition temperature even in composites with very low filler contents. This transition is shifted towards higher temperatures with increasing content of nanotubes. So at room temperature, some composites are in the rubber zone while others, in the transition zone. Therefore, this change in the material glass transition temperature can be taken as responsible for the important improvements obtained in the composites WVP and E′ values for carbon nanotubes content as low as 0.05 wt%. © 2011 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus
Autor:Famá, L.; Rojo, P.G.; Bernal, C.; Goyanes, S.
Filiación:Dep. de Física, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Ciudad Autónoma de Buenos Aires, Argentina
IFIBA (CONICET), Argentina
Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV, Ciudad Autónoma de Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
Grupo de Nuevos Materiales, Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1, No 70-01 Medellín, Colombia
Palabras clave:Dynamic mechanical properties; Starch-iodine complex; Starch-MWCNTs nanocomposites; Water vapor permeability; Biodegradable starch; Contact surface area; Dynamic mechanical property; Filler contents; Filler dispersion; Higher temperatures; Interfacial adhesions; Low water; matrix; Matrix materials; Room temperature; Starch-iodine complex; Transition zones; Water vapor permeability; Well-dispersed; Adhesion; Dynamics; Elastic moduli; Fillers; Glass; Glass transition; Iodine; Multiwalled carbon nanotubes (MWCN); Nanocomposites; Reinforced plastics; Starch; Temperature; Water vapor; Mechanical permeability
Año:2012
Volumen:87
Número:3
Página de inicio:1989
Página de fin:1993
DOI: http://dx.doi.org/10.1016/j.carbpol.2011.10.007
Título revista:Carbohydrate Polymers
Título revista abreviado:Carbohydr Polym
ISSN:01448617
CODEN:CAPOD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01448617_v87_n3_p1989_Fama

Referencias:

  • Ajayan, P.M., Zhou, O.Z., Applications of carbon nanotubes. Carbon nanotubes: Synthesis, structure, properties, and applications (2001) Topics in Applied Physics, 80. , M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Springer Verlag
  • (2000) Annual Book of ASTM, , ASTM E96-00 American Society for Testing and Materials Philadelphia, USA
  • Averous, F., Bouquillon, N., Biocomposites based on plasticized starch: Thermal and mechanical behaviors (2004) Carbohydrate Polymers, 56, pp. 111-122
  • Bertuzzi, M.A., Armada, M., Gottifredi, J.C., Water vapor permeability of edible starch based films (2007) Journal of Food Engineering, 82, pp. 17-25
  • Bian, Z., He, G., Chen, G.L., Investigation of shear bands under compressive testing for Zr-base bulk metallic glasses containing nanocrystals (2002) Scripta Materialia, 46, pp. 407-412
  • Cao, X., Chen, Y., Chang, P.R., Huneault, M.A., Preparation and properties of plasticized starch/multiwalled carbon nanotubes composites (2007) Journal of Applied Polymer Science, 106, pp. 1431-1437
  • De Azeredo, H.M.C., Nanocomposites for food packaging applications (2009) Food Research International, 42, pp. 1240-1253
  • De Falco, A., Marzocca, A.J., Corcuera, M.A., Ecesiza, A., Mondragon, I., Rubiolo, G.H., Accelerator adsorption onto carbon nanotubes surface affects the vulcanization process of styrene-butadiene rubber composites (2009) Journal of Applied Polymer Science, 113, pp. 2851-2857
  • Famá, L., Flores, S., Gerschenson, L., Goyanes, S., Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures (2006) Carbohydrate Polymers, 66, pp. 8-15
  • Famá, L., Gerschenson, L., Goyanes, S., Starch-vegetable fibre composites to protect food products (2009) Carbohydrate Polymers, 75, pp. 230-235
  • Famá, L., Goyanes, S., Gerschenson, L., Influence of storage time at room temperature in physicochemical properties of tapioca starch edible films (2007) Carbohydrate Polymers, 70, pp. 265-273
  • Famá, L., Pettarin, V., Bernal, C., Goyanes, S., Starch based nanocomposites with improved mechanical properties (2011) Carbohydrate Polymers, 83, p. 1226
  • Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Mechanical properties of tapioca-starch edible films containing sorbates (2005) Lebensmittel Wissenschaft und Technologie, 38, pp. 631-639
  • Flores, S., Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Physicochemical properties of tapioca-starch edible films. Influence of gelatinization and drying technique (2007) Food Research International, 4, pp. 257-265
  • García, N.L., Ribba, L., Dufresne, A., Aranguren, M., Goyanes, S., Physico-mechanical properties of biodegradable starch nanocomposites (2009) Macromolecular Material Engineering, 294, pp. 169-177
  • Gennadios, A., Weller, C.L., Gooding, C.H., Measurement errors in water vapor permeability of highly permeable, hydrophilic edible (1994) Journal of Food Engineering, 21, pp. 395-409
  • Gonera, A., Cornillon, P., Gelatinization of starch/gum/sugar systems studied by using DSC, NMR, and CSLM (2002) Starch/Starke, 58, pp. 50-516
  • Harrison, B.S., Atala, A., Oxygen producing biomaterials for tissue regeneration (2007) Biomaterials, 28, pp. 344-353
  • Ma, X., Jian, R., Chang, P.R., Yu, J., Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites (2008) Biomacromolecules, 9, pp. 3314-3320
  • Ma, X., Yu, J., Wang, N., Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers (2008) Composite Science and Technology, 68, pp. 268-273
  • Matayabas, J.C., Turner, S.R., Nanocomposite technology for enhancing the gas barrier of polyethylene terephthalate (2000) Polymer-clay Nanocomposites, pp. 207-226. , T.J. Pinnavaia, G.W. Beall, England
  • (1995) Official Methods of Analysis of AOAC International, 950.46, , 16th ed. AOAC International Gaithersburg, MD, USA
  • Pinnavaia, T., Beall, G., (2000) Polymer-clay Nanocomposites, , Wiley, J. & Sons, Ltd. England
  • Rao, Y.Q., Pochan, J.M., Mechanics of polymer-clay nanocomposites (2007) Macromolecules, 40, pp. 290-296
  • Star, A., Steuerman, D.W., Heath, J.R., Stoddart, J.F., Starched carbon nanotubes (2002) Angewandte Chemie International Edition, 41, pp. 2508-2511
  • Suhr, J., Zhang, W., Ajayan, P., Koratkar, N., Temperature activated interfacial friction damping in carbon nanotube polymer composites (2006) Nano Letters, 6, pp. 219-223
  • Sung, Y.T., Kum, C.K., Lee, H.S., Byon, N.S., Yoon, H.G., Kim, W.N., Dynamic mechanical and morphological properties of polycarbonate/multi- walled carbon nanotube composites (2005) Polymer, 46, pp. 5656-5661
  • Talja, R.A., Helén, H., Roos, Y.H., Jouppila, K., Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel (2007) Carbohydrate Polymers, 67, pp. 288-295
  • Teixeira, E.M., Pasquini, D., Curvelo, A.A.S., Corradini, E., Belgacem, M.N., Dufresne, A., Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch (2009) Carbohydrate Polymers, 78, pp. 422-431
  • Tsai, Y.-C., Chen, S.-Y., Liaw, H.-W., Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors (2007) Sensors and Actuators B, 125, pp. 474-481
  • Wicks, W., Jones, F., Pappas, S., Wicks, D., (2007) Organic Coating: Science and Technology, , J. Wiley & Sons, Inc. Hoboken, NJ
  • Wu, C.-S., Liao, H.-T., Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites (2007) Polymer, 48, pp. 4449-4458
  • Zhanjun, L., Lei, Z., Minnan, C., Jiugao, Y., Effect of carboxylate multi-walled carbon nanotubes on the performance of thermoplastic starch nanocomposites (2011) Carbohydrate Polymers, 83, pp. 447-451
  • Zilli, D., Chiliotte, C., Escobar, M.M., Bekeris, V., Rubiolo, G.R., Cukierman, A.L., Magnetic properties of multi-walled carbon nanotube-epoxy composites (2005) Polymer, 46, pp. 6090-6095
  • Zilli, D., Goyanes, S., Escobar, M.M., Chiliotte, C., Bekeris, V., Cukierman, A.L., Comparative analysis of electric, magnetic, and mechanical properties of epoxy matrix composites with different contents of multiple walled carbon nanotubes (2007) Polymer Composites, 28, pp. 612-617

Citas:

---------- APA ----------
Famá, L., Rojo, P.G., Bernal, C. & Goyanes, S. (2012) . Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus. Carbohydrate Polymers, 87(3), 1989-1993.
http://dx.doi.org/10.1016/j.carbpol.2011.10.007
---------- CHICAGO ----------
Famá, L., Rojo, P.G., Bernal, C., Goyanes, S. "Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus" . Carbohydrate Polymers 87, no. 3 (2012) : 1989-1993.
http://dx.doi.org/10.1016/j.carbpol.2011.10.007
---------- MLA ----------
Famá, L., Rojo, P.G., Bernal, C., Goyanes, S. "Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus" . Carbohydrate Polymers, vol. 87, no. 3, 2012, pp. 1989-1993.
http://dx.doi.org/10.1016/j.carbpol.2011.10.007
---------- VANCOUVER ----------
Famá, L., Rojo, P.G., Bernal, C., Goyanes, S. Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus. Carbohydr Polym. 2012;87(3):1989-1993.
http://dx.doi.org/10.1016/j.carbpol.2011.10.007