Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Fully bio-based nanocomposites were prepared using starch nanoparticles obtained by acidic hydrolysis of waxy maize starch granules as reinforcement. The same type of starch, which contains 99 wt.% amylopectin, was used to prepare glycerol plasticized and unplasticized matrices. The X-ray diffraction pattern of the plasticized reinforced materials displays both A and B-type peaks, showing that the crystalline structure of the nanocrystals was not affected by processing. The storage modulus of the composite material increases, with respect to the unfilled film, by 470% at 50 °C, while the permeability increases by 70%. This is probably due to a good association of glycerol with the nanoparticles leading to a fibrillar structure, studied by scanning electron microscopy of plasticized and unplasticized composites. © 2010 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals
Autor:García, N.L.; Ribba, L.; Dufresne, A.; Aranguren, M.; Goyanes, S.
Filiación:Laboratorio de Polímeros y Materiales Compuestos, Dep. de Física, Ciudad Universitaria, Pabellón 1, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires, Argentina
Universidad Nacional de San Martín (UNSAM), Campus Miguelete, San Martín, Prov. De Buenos Aires, Argentina
International School of Paper, Print Media and Biomaterials (Pagora), Grenoble Institute of Technology, BP 65, 38402 Saint Martin d'Hres Cedex, France
INTEMA, Av. Juan B. Justo 4302, 7608FDQ Mar del Plata, Argentina
Palabras clave:Biodegradable; Glycerol; Nanocomposites; Nanocrystals; Starch; Waxy maize; Acidic hydrolysis; Bio-based; Biodegradable; Crystalline structure; Fibrillar structures; Permeability increase; Reinforced material; Starch nanocrystals; Starch nanoparticles; Storage moduli; Thermoplastic starch; Waxy maize; Waxy maize starch; Diffraction; Glycerol; Nanocomposites; Nanocrystals; Nanoparticles; Scanning electron microscopy; X ray diffraction; Starch; Zea mays
Año:2011
Volumen:84
Número:1
Página de inicio:203
Página de fin:210
DOI: http://dx.doi.org/10.1016/j.carbpol.2010.11.024
Título revista:Carbohydrate Polymers
Título revista abreviado:Carbohydr Polym
ISSN:01448617
CODEN:CAPOD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01448617_v84_n1_p203_Garcia

Referencias:

  • Angellier, H., Choisnard, L., Molina-Boisseau, S., Ozil, P., Dufresne, A., Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology (2004) Biomacromolecules, 5, pp. 1545-1551
  • Angellier, H., Molina-Boisseau, S., Dole, P., Dufresne, A., Thermoplastic starch-waxy maize starch nanocrystals nanocomposites (2006) Biomacromolecules, 7, pp. 531-539
  • Angellier, H., Molina-Boisseau, S., Lebrun, L., Dufresne, A., Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber (2005) Macromolecules, 38, pp. 3783-3792
  • Angellier-Coussy, H., Putaux, J., Molina-Boisseau, S., Dufresne, A., Bertoft, E., Perez, S., The molecular structure of waxy maize starch nanocrystals (2009) Carbohydrate Research, 17, pp. 1558-1566
  • Angls, M.N., Dufresne, A., Plasticized starch/tunicin whiskers nanocomposites: 1. Structural analysis (2000) Macromolecules, 33, pp. 8344-8353
  • Angls, M.N., Dufresne, A., Plasticized starch/tunicin whiskers nanocomposites: 2 Mechanical behavior (2001) Macromolecules, 34, pp. 2921-2931
  • (1996) Standard Test Methods for Water Vapor Transmission of Materials. Annual Book of ASTM, , American Society for Testing and Materials Philadelphia, PA
  • Capron, I., Robert, P., Colonna, P., Brogly, Planchot, M.V., Starch in rubbery and glassy states by FTIR spectroscopy (2007) Carbohydrate Polymers, 68, pp. 249-259
  • Chang, P.R., Jian, R., Zheng, P., Yu, J., Ma, X., Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites (2010) Carbohydrate Polymers, 79, pp. 301-305
  • Chen, Y., Cao, X., Chang, P.R., Huneault, M.A., Comparative study on the films of poly (vinyl alcohol)/pea starch nanocrystals and poly (vinyl alcohol)/native pea starch (2008) Carbohydrate Polymers, 73, pp. 8-17
  • Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L., Del Nobile, M.A., Influence of glycerol and chitosan on tapioca starch-based edible film properties (2008) Journal of Food Engineering, 88, pp. 159-168
  • Cyras, V.P., Tolosa Zenklusen, M.C., Vazquez, A., Relationship between structure and properties of modified potato starch biodegradable films (2006) Journal of Applied Polymer Science, 101, pp. 4313-4319
  • De Menezes, A.J., Siqueira, G., Curvelo, A.A.S., Dufresne, A., Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites (2009) Polymer, 50, pp. 4552-4563
  • Dufresne, A., Dupeyre, D., Vignon, M.R., Cellulose microfibrils from potato cells: Processing and characterization of starch/cellulose microfibrils composites (2000) Journal of Applied Polymer Science, 76, pp. 2080-2092
  • Dufresne, A., Vignon, M.R., Improvement of starch films performances using cellulose microfibrils (1998) Macromolecules, 31, pp. 2693-2696
  • Famá, L., Bittante, A.M.B.Q., Sobral, P.J.A., Goyanes, S., Gerschenson, L.N., Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites (2010) Materials Science and Engineering: C, 30, pp. 853-859
  • Famá, L., Flores, S.K., Gerschenson, L., Goyanes, S., Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures (2006) Carbohydrate Polymers, 66, pp. 8-15
  • Famá, L., Goyanes, S., Gerschenson, L., Influence of storage time at room temperature on the physicochemical properties of cassava starch films (2007) Carbohydrate Polymers, 70, pp. 265-273
  • Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Mechanical properties of tapioca-starch edible films containing sorbates (2005) LWT, 38, pp. 631-639
  • Flores, S., Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Physical properties of tapioca-starch edible films: Influence of filmmaking and potassium sorbato (2007) Food Research International, 40, pp. 257-265
  • Flores, S., Haedo, A.S., Campos, C., Gerschenson, L., Antimicrobial performance of potassium sorbate supported in tapioca starch edible films (2007) European Food Research and Technology, 225, pp. 375-384
  • Forsell, P.M., Mikkilä, J.M., Moates, G.K., Parker, R., Phase and glass transition behavior of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch (1997) Carbohydrate Polymers, 34, pp. 275-282
  • García, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S., A comparison between the physico-chemical properties of tuber and cereal starches (2009) Food Research International, 42, pp. 976-982
  • Garcia, N.L., Ribba, L., Dufresne, A., Aranguren, M., Goyanes, S., Physico mechanical properties of biodegradable starch nanocomposites (2009) Macromolecular Materials and Engineering, 294, pp. 169-177
  • Imran, M., El-Fahmy, S., Revol-Junelles, A., Desobry, S., Cellulose derivative based active coatings: Effects of nisin and plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films (2010) Carbohydrate Polymers, 81, pp. 219-225
  • Jiang, W., Qiao, X., Sun, K., Mechanical and thermal properties of thermoplastic acetylated starch/poly (ethylene-co-vinyl alcohol) blends (2006) Carbohydrate Polymers, 65, pp. 139-143
  • Kristo, E., Biliaderis, C.G., Physical properties of starch nanocrystal-reinforced pullulan films (2007) Carbohydrate Polymers, 68, pp. 146-158
  • Kumar, A.P., Singh, R.P., Biocomposites of cellulose reinforced starch: Improvement of properties by photo-induced crosslinking (2008) Bioresource Technology, 99, pp. 8803-8809
  • Martins, I.M.G., Magina, S.P., Oliveira, L., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., New biocomposites based on thermoplastic starch and bacterial cellulose (2009) Composites Science and Technology, 69, pp. 2163-2168
  • Mathew, A.P., Dufresne, A., Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers (2002) Biomacromolecules, 3, pp. 609-617
  • Mathew, A.P., Thielemans, W., Dufresne, A., A mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers (2008) Journal of Applied Polymer Science, 109, pp. 4065-4074
  • Namazi, H., Dadkhah, A., Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids (2010) Carbohydrate Polymers, 79, pp. 731-737
  • Oostergetel, G.T., Van Bruggen, E.F.J., The crystalline domains in potato starch granules are arranged in a helical fashion (1993) Carbohydrate Polymers, 21, pp. 7-12
  • Rajan, A., Prasad, V.S., Abraham, T.E., Enzymatic esterification of starch using recovered coconut oil (2006) International Journal of Biological Macromolecules, 39, pp. 265-272
  • Rath, S.K., Singh, R.P., On the characterization of grafted and ungrafted starch, amylose, and amylopectin (1998) Journal of Applied Polymer Science, 70, pp. 1795-1810
  • Roman, M., Winter, W.T., Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose (2004) Biomacromolecules, 5, pp. 1671-1677
  • Teixeira, E.M., Pasquini, D., Curvelo, A.A.S., Corradini, E., Belgacem, M.N., Dufresne, A., Cassava bagasse whiskers reinforced plasticized cassava starch (2009) Carbohydrate Polymers, 78, pp. 422-431
  • Thomas, D.J., Atwell, W.A., (1997) Starches, , Eagan Press Handbook Series St. Paul
  • Viguié, J., Molina-Boisseau, S., Dufresne, A., Processing and characterization of waxy maize starch films plasticized by sorbitol and reinforced with starch nanocrystals (2007) Macromolecular Bioscience, 7, pp. 1206-1216
  • Waigh, T.A., Kato, K.L., Donald, A.M., Gidley, M.J., Clarke, C.J., Riekel, C., Side-chain liquid-crystalline model for starch (2000) Starch, 52, pp. 450-460
  • Wilhelm, H.M., Sierakowski, M.R., Souza, G.P., Wypych, F., Starch films reinforced with mineral clay (2003) Carbohydrate Polymers, 52, pp. 101-110

Citas:

---------- APA ----------
García, N.L., Ribba, L., Dufresne, A., Aranguren, M. & Goyanes, S. (2011) . Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydrate Polymers, 84(1), 203-210.
http://dx.doi.org/10.1016/j.carbpol.2010.11.024
---------- CHICAGO ----------
García, N.L., Ribba, L., Dufresne, A., Aranguren, M., Goyanes, S. "Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals" . Carbohydrate Polymers 84, no. 1 (2011) : 203-210.
http://dx.doi.org/10.1016/j.carbpol.2010.11.024
---------- MLA ----------
García, N.L., Ribba, L., Dufresne, A., Aranguren, M., Goyanes, S. "Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals" . Carbohydrate Polymers, vol. 84, no. 1, 2011, pp. 203-210.
http://dx.doi.org/10.1016/j.carbpol.2010.11.024
---------- VANCOUVER ----------
García, N.L., Ribba, L., Dufresne, A., Aranguren, M., Goyanes, S. Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydr Polym. 2011;84(1):203-210.
http://dx.doi.org/10.1016/j.carbpol.2010.11.024