Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The influence of wheat bran content in biodegradable composites based on cassava starch and containing glycerol and potassium sorbate were studied. Films were produced by casting and three different fractions of wheat bran fibre were used: 1.5 mg, 13.5 mg and 27.1 mg/g of matrix. It was observed that the addition of wheat bran, which contains 40 g of water insoluble fibre per 100 g of bran, shifted the glycerol-rich phase glass transition temperature toward higher temperatures, broadening and diminishing in intensity the peak associated with this relaxation. This effect suggests that the presence of fibre led to an enhancement in the glycerol dispersion. At room temperature, an increase in fibre content did not affect density of the matrix but caused the increase of the storage modulus and the decrease of loss tangent, moisture content and water vapor permeability. Besides, the addition of fibres led to the increase of the yellow index. The improvement in water vapor barrier properties jointly with the enhancement of mechanical properties when fibre was present, lead to the idea that the composite developed can be used to protect food and extend its shelf life. © 2008 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Starch-vegetable fibre composites to protect food products
Autor:Famá, L.; Gerschenson, L.; Goyanes, S.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428, Argentina
Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428, Argentina
Palabras clave:Composites; Physicochemical characterization; Starch-wheat bran; Building materials; Carbon fiber reinforced plastics; Food products; Glass transition; Glycerol; Grain (agricultural product); Magnesium printing plates; Mechanical properties; Phase transitions; Potassium; Starch; Vapors; Water content; Water vapor; Biodegradable composites; Cassava starches; Composites; Fibre contents; Glass transition temperatures; Higher temperatures; Loss tangents; Moisture contents; Physicochemical characterization; Potassium sorbate; Rich phases; Room temperatures; Shelf-life; Storage modulus; Water vapor barriers; Water vapor permeabilities; Wheat brans; Fibers; Manihot esculenta; Triticum aestivum
Año:2009
Volumen:75
Número:2
Página de inicio:230
Página de fin:235
DOI: http://dx.doi.org/10.1016/j.carbpol.2008.06.018
Título revista:Carbohydrate Polymers
Título revista abreviado:Carbohydr Polym
ISSN:01448617
CODEN:CAPOD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01448617_v75_n2_p230_Fama

Referencias:

  • Alemdar, A., Sain, M., Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties (2008) Composites Science and Technology, 68, pp. 557-565
  • Alves, V., Costa, N., Hilliou, L., Larotonda, F., Goncalves, M., Sereno, A., Design of biodegradable composite films for food packaging (2006) Desalination, 199 (1), pp. 331-333
  • Anderson, N.E., Clydesdale, F.M., An analysis of the dietary fiber content of a standard wheat bran (1980) Journal of Food Science, 45, pp. 336-340
  • AOAC (1990). Official methods of analysis. 13th ed. Washington, DC: Association of Official Analytical Chemists; ASTM D-1925 (1936). MacFarlane, Darby, S., David, K., Billmeyer & Fred, W. Method and instrument for selecting personal compatible colors. US Patent office, Pat. No. 5313267; ASTM E96-00 (2000). Standard test method for water vapor transmission of materials. Philadelphia: American Society for Testing and Materials; Avérous, L., Le Digabel, F., Properties of biocomposites based on lignocellulosic fillers (2006) Carbohydrate Polymers, 66, pp. 480-493
  • Bertuzzi, M.A., Armada, M., Gottifredi, J.C., Physicochemical characterization of starch based films (2007) Journal of Food Engineering, 82, pp. 17-25
  • Chang, P., Chea, P.B., Seow, C.C., Plasticizing-antiplasticizing effects of water on physical properties of cassava starch films in the glassy state (2000) Journal of Food Science, 65 (3), pp. 445-451
  • Curvelo, A.A.S., Carvalho, A.J.F., Agnelli, J.a.M., Thermoplastic starch-cellulosic fibrecomposites: Preliminary results (2001) Carbohydrate Polymers, 45, pp. 183-188
  • Danish Food Composition Databank (2007). http://www.foodcomp.dk. Accessed 01/01/2008; Famá, L., Flores, S., Gerschenson, L., Goyanes, S., Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures (2006) Carbohydrate Polymers, 66 (1), pp. 8-15
  • FAO (2004). Food and Agriculture Organization. Proceedings of the validation forum on the global cassava development strategy (Vol. 6). Rome: International Fund for Agricultural Development; Flores, S.K., Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Physical properties of cassava-starch edible films: Influence of filmmaking and potassium sorbate (2007) Food Research International, 4 (2), pp. 257-265
  • García, M., Martino, M., Zaritzky, N., Lipid addition to improve barrier properties of edible starch-based films and coatings (2000) Journal of Food Science, 65 (6), pp. 941-947
  • Gennadios, A., Weller, C.L., Gooding, C.H., Measurement errors in water vapor permeability of highly permeable, hydrophilic edible (1994) Journal of Food Engineering, 21, pp. 395-409
  • Goyanes, S.N., Konig, P.G., Marconi, J.D., Dynamic mechanical analysis of particulate-filled epoxy resin (2003) Journal Applied Polymer Science, 88, pp. 883-892
  • Guan, J., Hanna, M.A., Functional properties of extruded foam composites of starch acetate and corn cob fibre (2004) Industrial Crops and Products, 19, pp. 255-269
  • Guilbert, S., Gontard, N., Gorris, L.G.M., Prolongation of the shelf-life of perishable food products using biodegradable films and coatings (1996) Labensm.-Wiss. U.-Technology, 29, pp. 10-17
  • Hermans, P.H., Weidinger, A., On the determination of the crystalline fraction of polyethylenes from X-ray diffraction (1961) Macromolecular Chemistry, pp. 24-36
  • Idicula, M., Malhotra, S.K., Joseph, K., Thomas, S., Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites (2005) Composites Science and Technology, 65, pp. 1077-1087
  • Janot, C., (1997) Quasicrystals a primer. Monographs on the physics and chemistry of materials, , Oxford Science Publications pp. 9
  • Jiang, W., Qiao, W., Sun, K., Mechanical and thermal properties of thermoplastic acetylated starch/poly(ethylene-co-vinyl alcohol) blends (2006) Carbohydrate Polymers, 65 (2), pp. 139-143
  • John, M.J., Thomas, S., Biofibres and biocomposites (2008) Carbohydrate Polymers, 71, pp. 343-364
  • Kester, J.J., Fennema, O.R., Edible films and coatings. A review (1986) Food Technology, 40, pp. 47-59
  • Lourdin, D., Valle, G.D., Colonna, P., Influence of amylose content on starch films and foams (1995) Carbohydrate Polymers, 27 (4), pp. 261-270
  • Marcovich, N., Aranguren, M., Reboredo, M., Modified woodflour as thermoset fillers. Part I. Effect of the chemical modification and percentage of filler on the mechanical properties (2001) Polymer, 42, pp. 815-825
  • Mathew, A.P., Dufresne, A., Plasticized waxy maize starch: Effect of polyols and relative humidity on material properties (2002) Biomacromolecules, 3 (5), pp. 1101-1108
  • Matthews, F.L., Rawlings, R.D., (1994) Composite materials: Engineering and science, , Chapmen & Hall (ldt.), London
  • Mosiewicki, M.A. (2005). Materiales compuestos con refuerzos y matrices poliméricas de origen vegetal. Tesis de Doctorado en Ciencias de Materiales. Universidad Nacional de Mar del Plata. INTEMA. Argentina; Nielsen, L.E., (1962) Mechanical properties of polymers, , Van Nostrand Reinhold, New York
  • (2000) Polymer - clay nanocomposites, , Pinnavaia T.J., and Beall G.W. (Eds), Wiley, J. & Sons (ltd.), England
  • Nielsen, L.E., Landel, R.F., (1994) Mechanical properties of polymers and composites, , Ochiai S. (Ed), Marcel Dekker, New York
  • Romero-Bastida, C.A., Bello-Pérez, L.A., García, M.A., Martino, M.N., Solorza-Feria, J., Zarintzky, N.E., Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches (2005) Carbohydrate Polymers, 60, pp. 235-244
  • Sokal, R.R., Rohlf, J.B., (1969) The principles and practice of statistics in biological research, , W.H. Freeman and Company, San Francisco, California
  • Talja, R.A., Helén, H., Roos, Y.H., Jouppila, K., Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films (2007) Carbohydrate Polymers, 67, pp. 288-295
  • Tharanathan, R.N., Biodegradable films and composite coatings: Past, present and future (2003) Trends in Food Science and Technology, 14, pp. 71-78
  • Vermeiren, L., Devlieghere, F., Van Beest, M., de Kruijf, N., Debevere, J., Developments in the active packaging of foods (1999) Trend of Food Science Technology, 10, pp. 77-86
  • Wilhelm, H.M., Sierakowski, M.R., Souza, G.P., Wypych, F., Starch films reinforced with mineral clay (2003) Carbohydrate Polymers, 52, pp. 101-110
  • Wollerdorfer, M., Bader, H., Influence of natural fibres on the mechanical properties of biodegradable polymers (1998) Industrial Crops and Products, 8 (2), pp. 105-112
  • Yang, H.-S., Kim, H.-J., Park, H.-J., Lee, B.-J., Hwang, T.-S., Water absorption behavior and mechanical properties of lignocellulosic filler-polyolefin bio-composites (2006) Composite Structures, 72, pp. 429-437

Citas:

---------- APA ----------
Famá, L., Gerschenson, L. & Goyanes, S. (2009) . Starch-vegetable fibre composites to protect food products. Carbohydrate Polymers, 75(2), 230-235.
http://dx.doi.org/10.1016/j.carbpol.2008.06.018
---------- CHICAGO ----------
Famá, L., Gerschenson, L., Goyanes, S. "Starch-vegetable fibre composites to protect food products" . Carbohydrate Polymers 75, no. 2 (2009) : 230-235.
http://dx.doi.org/10.1016/j.carbpol.2008.06.018
---------- MLA ----------
Famá, L., Gerschenson, L., Goyanes, S. "Starch-vegetable fibre composites to protect food products" . Carbohydrate Polymers, vol. 75, no. 2, 2009, pp. 230-235.
http://dx.doi.org/10.1016/j.carbpol.2008.06.018
---------- VANCOUVER ----------
Famá, L., Gerschenson, L., Goyanes, S. Starch-vegetable fibre composites to protect food products. Carbohydr Polym. 2009;75(2):230-235.
http://dx.doi.org/10.1016/j.carbpol.2008.06.018