Abstract:
The Ca(II)-alginate beads were formulated changing some synthesis variables: pH (3.8–6.8), extrusion tip size (0.25–0.50 mm) and washing/storage protocol, to evaluate possible implications in the structural properties of beads, which are critical to scale and standardize their production at industrial level. Regardless of the macro- (diameter, area, perimeter and roundness, studied by image analysis) and micro-structural (size, density and interconnectivity of rods assessed by SAXS) parameters analyzed, there are no effects related to the washing and storage protocol employed for any synthesis conditions. Structural parameters are only influenced by the synthesis pH. Both washing protocol and extrusion tip size effects on the consolidation of the alginate network are negligible at each pH value. Besides, none of the synthesis variables affected the availability of water within the beads as assessed by diffusion coefficient and water activity measurements. A model, relating chain-chain interactions and polymer chain packing, is proposed. © 2018 Elsevier Ltd
Registro:
Documento: |
Artículo
|
Título: | Effects of pH, extrusion tip size and storage protocol on the structural properties of Ca(II)-alginate beads |
Autor: | Zazzali, I.; Aguirre Calvo, T.R.; Pizones Ruíz-Henestrosa, V.M.; Santagapita, P.R.; Perullini, M. |
Filiación: | Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamentos de Industrias y Química Orgánica, Buenos Aires, Argentina CONICET-Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
|
Palabras clave: | Alginate; Diffusion coefficient; Encapsulation; Microstructure; SAXS; Water content and activity; Alginate; Diffusion; Encapsulation; Extrusion; Microstructure; Structural properties; Washing; Alginate beads; Chain-chain interactions; Interconnectivity; Micro-structural; Polymer chain packing; SAXS; Structural parameter; Synthesis conditions; pH effects |
Año: | 2019
|
Volumen: | 206
|
Página de inicio: | 749
|
Página de fin: | 756
|
DOI: |
http://dx.doi.org/10.1016/j.carbpol.2018.11.051 |
Título revista: | Carbohydrate Polymers
|
Título revista abreviado: | Carbohydr Polym
|
ISSN: | 01448617
|
CODEN: | CAPOD
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01448617_v206_n_p749_Zazzali |
Referencias:
- Aguirre Calvo, T.R., Santagapita, P.R., Physicochemical characterization of alginate beads containing sugars and biopolymers (2016) Journal of Quality and Reliability Engineering, , ID:9184039
- Aguirre Calvo, T.R., Busch, V.M., Santagapita, P.R., Stability and release of an encapsulated solvent-free lycopene extract in alginate-based beads (2017) LWT - Food Science and Technology, 77, pp. 406-412
- Aguirre-Calvo, T.R., Perullini, A.M., Santagapita, P.R., Encapsulation of betacyanins and polyphenols extracted from leaves and stems of beetroot in Ca(II)-alginate beads: A structural study (2018) Journal of Food Engineering, 235, pp. 32-40
- Agulhon, P., Robitzer, M., David, L., Quignard, F., Structural regime identification in ionotropic alginate gels: Influence of the cation nature and alginate structure (2012) Biomacromolecules, 13 (1), pp. 215-220
- Bhujbal, S.V., Paredes-Juarez, G.A., Niclou, S.P., de Vos, P., Factors influencing the mechanical stability of alginate beads applicable for immunoisolation of mammalian cells (2014) Journal of the Mechanical Behavior of Biomedical Materials, 37, pp. 196-208
- Bhujbal, S.V., de Vos, P., Niclou, S.P., Drug and cell encapsulation: Alternative delivery options for the treatment of malignant brain tumors (2014) Advanced Drug Delivery Reviews, 67-68, pp. 142-215
- Biswas, S., Chattopadhyy, M., Sen, K.K., Saha, M.K., Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice (2015) Carbohydrate Polymers, 121, pp. 403-410
- Caccavo, D., Cascone, S., Lamberti, G., Barba, A.A., Hydrogels: Experimental characterization and mathematical modelling of their mechanical and diffusive behavior (2018) Chemical Society Reviews, 47 (7), pp. 2357-2373
- Deladino, L., Anbinder, P.S., Navarro, A.S., Martino, M.N., Encapsulation of natural antioxidants extracted from Ilex paraguariensis (2008) Carbohydrate Polymers, 71 (1), pp. 126-134
- Draget, K.I., Taylor, C., Chemical, physical and biological properties of alginates and their biomedical implications (2011) Food Hydrocolloids, 25 (2), pp. 251-256
- He, X., Liu, Y., Li, H., Li, H., Single-stranded structure of alginate and its con- formation evolvement after an interaction with calcium ions as revealed by electron microscopy (2016) RSC Advances, 6 (115), pp. 114779-114782
- Hester-Reilly, H.J., Shapley, N.C., Imaging contrast effects in alginate microbeads containing trapped emulsion droplets (2007) Journal of Magnetic Resonance, 188 (1), pp. 168-175
- Hoare, T.R., Kohane, D.S., Hydrogels in drug delivery: Progress and challenges (2008) Polymer, 49, pp. 1993-2007
- Lee, K.Y., Mooney, D.J., Alginate: Properties and biomedical applications (2012) Progress in Polymer Science, 37, pp. 106-126
- Li, Y., Feng, C., Li, J., Mu, Y., Liu, Y., Kong, M., Construction of multilayer alginate hydrogel beads for oral delivery of probiotics cells (2017) International Journal of Biological Macromolecules, 105, pp. 924-930
- Narayanan, R.P., Melman, G., Letourneau, N.J., Mendelson, N.L., Melman, A., Photodegradable iron (III) cross-linked alginate gels (2012) Biomacromolecules, 13, pp. 2465-2471
- Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., Bugarski, B., An overview of encapsulation technologies for food applications (2011) Procedia Food Science, 1, pp. 1806-1815
- Perullini, M., Jobbágy, M., Soler-Illia, G.J.A.A., Bilmes, S.A., Cell growth at cavities created inside silica monoliths synthesized by sol-gel (2005) Chemistry of Materials, 17 (15), pp. 3806-3808
- Perullini, M., Orias, F., Durrieu, C., Jobbágy, M., Bilmes, S.A., Co-encapsulation of Daphnia magna and microalgae in silica matrices, a stepping stone toward a portable microcosm (2014) Biotechnology Reports, 4, pp. 147-150
- Ramos, P.E., Silva, P., Alario, M.M., Pastrana, L.M., Teixeira, J.A., Cerqueira, M.A., Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics (2018) Food Hydrocolloids, 77, pp. 8-16
- Rowley, J.A., Madlambayan, G., Mooney, D.J., Alginate hydrogels as synthetic extracellular matrix materials (1999) Biomaterials, 20, pp. 45-53
- Santagapita, P.R., Mazzobre, M.F., Buera, M.P., Formulation and drying of alginate beads for controlled release and stabilization of invertase (2011) Biomacromolecules, 12 (9), pp. 3147-3155
- Santagapita, P.R., Laghi, L., Panarese, V., Tylewicz, U., Rocculi, P., Dalla Rosa, M., Modification of transverse NMR relaxation times and water diffusion coefficients of kiwifruit pericarp tissue subjected to osmotic dehydration (2013) Food and Bioprocess Technology, 6, pp. 1434-1443
- Sarkar, N., Sahoo, G., Das, R., Prusty, G., Swain, S.K., Carbon quantum dot tailored calcium alginate hydrogel for pH responsive controlled delivery of vancomycin (2017) European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 109, pp. 359-371
- Sonego, J.M., Santagapita, P.R., Perullini, M., Jobbágy, M., Ca(II) and Ce(III) homogeneous alginate hydrogels from the parent alginic acid precursor: A structural study (2016) Dalton Transactions, 45 (24), pp. 10050-10057
- Spedalieri, C., Sicard, C., Perullini, M., Brayner, R., Coradin, T., Livage, J., Silica@proton-alginate microreactors: A versatile platform for cell encapsulation (2015) Journal of Materials Chemistry, 3, pp. 3189-3194
- Stokke, B.T., Draget, K.I., Smidsrod, O., Yuguchi, Y., Urakawa, H., Kajiwara, K., Small-angle X-ray scattering and rheological characterization of alginate gels. 1. Ca-alginate gels (2000) Macromolecules, 33 (5), pp. 1853-1863
- Traffano-Schiffo, M.V., Aguirre Calvo, T.R., Castro-Giraldez, M., Fito, P.J., Santagapita, P.R., Alginate beads containing lactase: Stability and micro- structure (2017) Biomacromolecules, 18, pp. 1785-1792
- Traffano-Schiffo, M.V., Castro-Giraldez, M., Fito, P.J., Perullini, M., Santagapita, P.R., Gums induced microstructure stability in Ca(II)-alginate beads containing lactase analyzed by SAXS (2018) Carbohydrate Polymers, 179, pp. 402-407
- Wandrey, C., Bartkowiak, A., Harding, S.E., Materials for encapsulation (2009) Encapsulation technologies for food active ingredients and food processing, pp. 31-100. , N.J. Zuidam V.A. Nedovic Springer Dordrecht, The Netherlands
Citas:
---------- APA ----------
Zazzali, I., Aguirre Calvo, T.R., Pizones Ruíz-Henestrosa, V.M., Santagapita, P.R. & Perullini, M.
(2019)
. Effects of pH, extrusion tip size and storage protocol on the structural properties of Ca(II)-alginate beads. Carbohydrate Polymers, 206, 749-756.
http://dx.doi.org/10.1016/j.carbpol.2018.11.051---------- CHICAGO ----------
Zazzali, I., Aguirre Calvo, T.R., Pizones Ruíz-Henestrosa, V.M., Santagapita, P.R., Perullini, M.
"Effects of pH, extrusion tip size and storage protocol on the structural properties of Ca(II)-alginate beads"
. Carbohydrate Polymers 206
(2019) : 749-756.
http://dx.doi.org/10.1016/j.carbpol.2018.11.051---------- MLA ----------
Zazzali, I., Aguirre Calvo, T.R., Pizones Ruíz-Henestrosa, V.M., Santagapita, P.R., Perullini, M.
"Effects of pH, extrusion tip size and storage protocol on the structural properties of Ca(II)-alginate beads"
. Carbohydrate Polymers, vol. 206, 2019, pp. 749-756.
http://dx.doi.org/10.1016/j.carbpol.2018.11.051---------- VANCOUVER ----------
Zazzali, I., Aguirre Calvo, T.R., Pizones Ruíz-Henestrosa, V.M., Santagapita, P.R., Perullini, M. Effects of pH, extrusion tip size and storage protocol on the structural properties of Ca(II)-alginate beads. Carbohydr Polym. 2019;206:749-756.
http://dx.doi.org/10.1016/j.carbpol.2018.11.051