Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Previous works show that the addition of trehalose and gums in β-galactosidase (lactase) Ca(II)-alginate encapsulation systems improved its intrinsic stability against freezing and dehydration processes in the pristine state. However, there is no available information on the evolution in microstructure due to the constraints imposed by the operational conditions. The aim of this research is to study the time course of microstructural changes of Ca(II)-alginate matrices driven by the presence of trehalose, arabic and guar gums as excipients and to discuss how these changes influence the diffusional transport (assessed by LF-NMR) and the enzymatic activity of the encapsulated lactase. The structural modifications at different scales were assessed by SAXS. The incorporation of gums as second excipients induces a significant stabilization in the microstructure not only at the rod scale, but also in the characteristic size and density of alginate dimers (basic units of construction of rods) and the degree of interconnection of rods at a larger scale, improving the performance in terms of lactase activity. © 2017 Elsevier Ltd

Registro:

Documento: Artículo
Título:Gums induced microstructure stability in Ca(II)-alginate beads containing lactase analyzed by SAXS
Autor:Traffano-Schiffo, M.V.; Castro-Giraldez, M.; Fito, P.J.; Perullini, M.; Santagapita, P.R.
Filiación:Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universidad Politécnica de Valencia, Camino de Vera s/n, Valencia, 46022, Spain
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, C1428AOE, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, C1428AOE, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamentos de Industrias y Química Orgánica, Buenos Aires, C1428AOE, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, C1428AOE, Argentina
Palabras clave:Alginate beads; Encapsulation; Hydrocolloids; Microstructure; Small-Angle X-ray scattering (SAXS); β-Galactosidase; Calcium; Dehydration; Encapsulation; Microstructure; X ray scattering; Alginate beads; Alginate encapsulation; Galactosidases; Hydrocolloids; Microstructural changes; Microstructure stability; Operational conditions; Structural modifications; Alginate; alginic acid; excipient; galactan; glucuronic acid; guar gum; gum arabic; hexuronic acid; immobilized enzyme; lactase; mannan; nitrobenzene derivative; plant gum; trehalose; chemistry; diffusion; hydrogel; metabolism; small angle scattering; time factor; X ray diffraction; Alginates; Diffusion; Enzymes, Immobilized; Excipients; Galactans; Glucuronic Acid; Gum Arabic; Hexuronic Acids; Hydrogels; Lactase; Mannans; Nitrobenzenes; Plant Gums; Scattering, Small Angle; Time Factors; Trehalose; X-Ray Diffraction
Año:2018
Volumen:179
Página de inicio:402
Página de fin:407
DOI: http://dx.doi.org/10.1016/j.carbpol.2017.09.096
Título revista:Carbohydrate Polymers
Título revista abreviado:Carbohydr Polym
ISSN:01448617
CODEN:CAPOD
CAS:alginic acid, 28961-37-7, 29894-36-8, 9005-32-7, 9005-38-3; galactan, 39300-87-3, 9037-55-2; glucuronic acid, 36116-79-7, 576-37-4, 6556-12-3; guar gum, 9000-30-0; gum arabic, 9000-01-5; lactase, 9031-11-2; mannan, 51395-96-1, 9036-88-8; trehalose, 99-20-7; Alginates; alginic acid; Enzymes, Immobilized; Excipients; Galactans; Glucuronic Acid; guar gum; Gum Arabic; Hexuronic Acids; Hydrogels; Lactase; Mannans; Nitrobenzenes; Plant Gums; Trehalose
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01448617_v179_n_p402_TraffanoSchiffo

Referencias:

  • Agulhon, P., Robitzer, M., David, L., Quignard, F., Structural regime identification in ionotropic alginate gels: Influence of the cation nature and alginate structure (2012) Biomacromolecules, 13 (1), pp. 215-220
  • Andresen, I.L., Skipnes, O., Smidsrød, O., Ostgaard, K., Hemmer, P.C., Some biological functions of matrix components in benthic algae in relation to their chemistry and the composition of seawater (1977) ACS Symposium Series, 48, pp. 361-381
  • Austin, L., Bower, J.J., Muldoon, C., The controlled release of leukaemia inhibitory factor (LIF) from gels (1996) Proceeding of the International Symposium on Controlled Release of Bioactive Materials, 23, pp. 739-740
  • Dashevsky, A., Protein loss by the microencapsulation of an enzyme (lactase) in alginate beads (1998) International Journal of Pharmaceutics, 161 (1), pp. 1-5
  • Estevinho, B.N., Damas, A.M., Martins, P., Rocha, F., Microencapsulation of β-galactosidase with different biopolymers by a spray-drying process (2014) Food Research International, 64, pp. 134-140
  • Gombotz, W.R., Wee, S.F., Protein release from alginate matrices (2012) Advanced Drug Delivery Reviews, 64, pp. 194-205
  • He, X., Liu, Y., Li, H., Li, H., Single-stranded structure of alginate and its conformation evolvement after an interaction with calcium ions as revealed by electron microscopy (2016) RSC Advances, 6 (115), pp. 114779-114782
  • Hester-Reilly, H.J., Shapley, N.C., Imaging contrast effects in alginate microbeads containing trapped emulsion droplets (2007) Journal of Magnetic Resonance, 188 (1), pp. 168-175
  • Holz, M., Heil, S.R., Sacco, A., Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements (2000) Physical Chemistry Chemical Physics, 2 (20), pp. 4740-4742
  • Klein, J., Stock, J., Vorlop, K.-D., Pore size and properties of spherical Ca-alginate biocatalysts (1983) European Journal of Applied Microbiology Biotechnology, 18, pp. 86-91
  • Park, Y.K., Santi, M.S.S., Pastore, G.M., Production and characterization of β-galactosidase from Aspergillus oryzae (1979) Journal of Food Science, 44 (1), pp. 100-103
  • Perullini, M., Jobbágy, M., Soler-Illia, G.J.A.A., Bilmes, S.A., Cell growth at cavities created inside silica monoliths synthesized by sol-gel (2005) Chemistry of Materials, 17 (15), pp. 3806-3808
  • Perullini, M., Orias, F., Durrieu, C., Jobbágy, M., Bilmes, S.A., Co-encapsulation of Daphnia magna and microalgae in silica matrices, a stepping stone toward a portable microcosm (2014) Biotechnology Reports, 4, pp. 147-150
  • Santagapita, P.R., Buera, M.P., Trehalose–water–salt interactions related to the stability of β-galactosidase in supercooled media (2008) Food Biophysics, 3 (1), pp. 87-93
  • Santagapita, P.R., Mazzobre, M.F., Buera, M.P., Formulation and drying of alginate beads for controlled release and stabilization of invertase (2011) Biomacromolecules, 12 (9), pp. 3147-3155
  • Santagapita, P.R., Mazzobre, M.F., del Pilar Buera, M., Invertase stability in alginate beads: Effect of trehalose and chitosan inclusion and of drying methods (2012) Food Research International, 47 (2), pp. 321-330
  • Santagapita, P., Laghi, L., Panarese, V., Tylewicz, U., Rocculi, P., Dalla Rosa, M., Modification of transverse NMR relaxation times and water diffusion coefficients of kiwifruit pericarp tissue subjected to osmotic dehydration (2013) Food and Bioprocess Technology, 6 (6), pp. 1434-1443
  • Sen, P., Nath, A., Bhattacharjee, C., Chowdhury, R., Bhattacharya, P., Process engineering studies of free and micro-encapsulated β-galactosidase in batch and packed bed bioreactors for production of galactooligosaccharides (2014) Biochemical Engineering Journal, 90, pp. 59-72
  • Smidsrød, O., Larsen, B., Painter, T., Haug, A., The role of intramolecular autocatalysis in the acid hydrolysis of polysaccharides containing 1,4-linked hexuronic acid (1969) Acta Chemica Scandinavica, 23 (5), pp. 1573-1580
  • Sonego, J.M., Santagapita, P.R., Perullini, M., Jobbágy, M., Ca (II) and Ce (III) homogeneous alginate hydrogels from the parent alginic acid precursor: A structural study (2016) Dalton Transactions, 45 (24), pp. 10050-10057
  • Stejskal, E.O., Tanner, J.E., Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient (1965) The Journal of Chemical Physics, 42 (1), pp. 288-292
  • Stewart, W.W., Swaisgood, H.E., Characterization of calcium alginate pore diameter by size-exclusion chromatography using protein standards (1993) Enzyme Microbiology Technology, 15, pp. 922-927
  • Stokke, B.T., Draget, K.I., Smidsrød, O., Yuguchi, Y., Urakawa, H., Kajiwara, K., Small-angle x-ray scattering and rheological characterization of alginate gels. 1. Ca–alginate gels (2000) Macromolecules, 33 (5), pp. 1853-1863
  • Tønnesen, H.H., Karlsen, J., Alginate in drug delivery systems (2002) Journal of Drug Development and Industrial Pharmacy, 28 (6), pp. 621-630
  • Thu, B., Gåserød, O., Paus, D., Mikkelsen, A., Skjåk-Bræk, G., Toffanin, R., Inhomogeneous alginate gel spheres: An assessment of the polymer gradients by synchrotron radiation-induced x-ray emission, magnetic resonance microimaging, and mathematical modeling (2000) Biopolymers, 53 (1), pp. 60-71
  • Traffano-Schiffo, M.V., Aguirre Calvo, T.R., Castro-Giraldez, M., Fito, P.J., Santagapita, P.R., Alginate beads containing lactase: Stability and microstructure (2017) Biomacromolecules, 18, pp. 1785-1792
  • Traffano-Schiffo, M.V., Castro-Giraldez, M., Fito, P.J., Santagapita, P.R., Encapsulation of lactase in Ca(II)-alginate beads: Effect stabilizers and drying methods (2017) Food Research International, , [in press]
  • Waters, D.J., Engberg, K., Parke-Houben, R., Hartmann, L., Ta, C.N., Toney, M.F., Frank, C.W., Morphology of photopolymerized end-linked poly (ethylene glycol) hydrogels by small-angle X-ray scattering (2010) Macromolecules, 43 (16), pp. 6861-6870
  • Zhang, Z., Zhang, R., McClements, D.J., Lactase (β-galactosidase) encapsulation in hydrogel beads with controlled internal pH microenvironments: Impact of bead characteristics on enzyme activity (2017) Food Hydrocolloids, 67, pp. 85-93
  • Zhang, B.-B., Wang, L., Charles, V., Rooke, J.C., Su, B.-L., Robust and biocompatible hybrid matrix with controllable permeability for microalgae encapsulation (2016) ACS Applied Materials and Interfaces, 8 (14), pp. 8939-8946
  • Zhang, Z., Zhang, R., Chen, L., McClements, D.J., Encapsulation of lactase (β-galactosidase) into κ-carrageenan-based hydrogel beads: Impact of environmental conditions on enzyme activity (2016) Food Chemistry, 200, pp. 69-75

Citas:

---------- APA ----------
Traffano-Schiffo, M.V., Castro-Giraldez, M., Fito, P.J., Perullini, M. & Santagapita, P.R. (2018) . Gums induced microstructure stability in Ca(II)-alginate beads containing lactase analyzed by SAXS. Carbohydrate Polymers, 179, 402-407.
http://dx.doi.org/10.1016/j.carbpol.2017.09.096
---------- CHICAGO ----------
Traffano-Schiffo, M.V., Castro-Giraldez, M., Fito, P.J., Perullini, M., Santagapita, P.R. "Gums induced microstructure stability in Ca(II)-alginate beads containing lactase analyzed by SAXS" . Carbohydrate Polymers 179 (2018) : 402-407.
http://dx.doi.org/10.1016/j.carbpol.2017.09.096
---------- MLA ----------
Traffano-Schiffo, M.V., Castro-Giraldez, M., Fito, P.J., Perullini, M., Santagapita, P.R. "Gums induced microstructure stability in Ca(II)-alginate beads containing lactase analyzed by SAXS" . Carbohydrate Polymers, vol. 179, 2018, pp. 402-407.
http://dx.doi.org/10.1016/j.carbpol.2017.09.096
---------- VANCOUVER ----------
Traffano-Schiffo, M.V., Castro-Giraldez, M., Fito, P.J., Perullini, M., Santagapita, P.R. Gums induced microstructure stability in Ca(II)-alginate beads containing lactase analyzed by SAXS. Carbohydr Polym. 2018;179:402-407.
http://dx.doi.org/10.1016/j.carbpol.2017.09.096