Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Considering the polysaccharide composition and 32% of crystallinity of the water insoluble fiber extracted from corn husk (CHF) agricultural residue, its filler performance as water vapor permeability (WVP) and mechanical modifier in edible films based on commercial low methoxyl pectin (LMP) was evaluated (0, 1, 3, 5, 8% concentrations). The 53-μm-CHF carried phenolics and carotenes, and composites showed antioxidant capacity. Homogeneous films with a continuous LMP matrix were obtained. The 5%-CHF composite showed the highest surface contact angle (44°) and tensile strength, without change in elongation, while WVP was decreased in the 3–8% CHF-LMP-films. The latter was ascribed to the CHF-filler crystallinity whereas the improvement in mechanical performance and contact angle was attributed to a CHF-interconnected network formed at 5%-CHF critical concentration. Corn husk residue can be utilized as a source of fibers for material development. Composites with enhanced performance can be an antioxidant strategy at food interfaces. © 2017 Elsevier Ltd

Registro:

Documento: Artículo
Título:Pectin-based composite film: Effect of corn husk fiber concentration on their properties
Autor:Bernhardt, D.C.; Pérez, C.D.; Fissore, E.N.; De'Nobili, M.D.; Rojas, A.M.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428BGA, Argentina
Instituto de Tecnología de Alimentos (ITA), INTA-CastelarBuenos Aires Province, Argentina
The National Research Council of Argentina (CONICET), Argentina
Palabras clave:Antioxidant capability; Corn husk fiber; Pectin composite film; Surface properties; Tensile strength; Water vapor permeability; Agricultural wastes; Antioxidants; Contact angle; Fibers; Fillers; Mechanical permeability; Surface properties; Tensile strength; Water vapor; Corn husks; Critical concentration; Interconnected network; Material development; Mechanical performance; Polysaccharide composition; Surface contact angle; Water vapor permeability; Composite films; pectin; chemistry; food packaging; maize; permeability; tensile strength; Food Packaging; Pectins; Permeability; Tensile Strength; Zea mays
Año:2017
Volumen:164
Página de inicio:13
Página de fin:22
DOI: http://dx.doi.org/10.1016/j.carbpol.2017.01.031
Título revista:Carbohydrate Polymers
Título revista abreviado:Carbohydr Polym
ISSN:01448617
CODEN:CAPOD
CAS:pectin, 9000-69-5; Pectins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01448617_v164_n_p13_Bernhardt

Referencias:

  • Abdollahi, M., Alboofetileh, M., Rezaei, M., Behrooz, R., Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers (2013) Food Hydrocolloids, 32, pp. 416-424
  • Andrade, R.M.S., Ferreira, M.S.L., Gonçalves, E.C.B.A., Development and characterization of edible films based on fruit and vegetable residues (2016) Journal of Food Science, 81 (2), pp. E412-E418
  • Assifaoui, A., Loupiac, C., Chambin, O., Cayot, P., Structure of calcium and zinc pectinate films investigated by FTIR spectroscopy (2010) Carbohydrate Research, 345 (7), pp. 929-933
  • Basanta, M.F., Marin, A., De Leo, S.A., Gerschenson, L.N., Erlejman, A.G., Tomas-Barberan, F.A., Antioxidant Japanese plum (Prunus salicina) microparticles with potential for food preservation (2016) Journal of Functional Foods, 24, pp. 287-296
  • Bernhardt, D.C., Ponce, N.M.A., Stortz, C.A., Rojas, A.M., Análisis químicos y fisicoquímicos de brácteas de Zea mays L. y de sus polisacáridos de pared celular (2015) XX simposio nacional de química orgánica, soc. Argentina de investigación en química orgánica, Mar del Plata, Argentina
  • Braccini, I., Pérez, S., Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg box model revisited (2001) Biomacromolecules, 2, pp. 1089-1096
  • Brand-Williams, W., Cuvelier, M.E., Berset, C., Use of free radical method to evaluate antioxidant activity (1995) LWT—Food Science and Technology, 28, pp. 25-30
  • Coimbra, M.A., Barros, A., Barros, M., Rutledge, D.N., Delgadillo, I., FTIR spectroscopy as a tool for the analysis of olive pulp cell-wall polysaccharide extracts (1999) Carbohydrate Research, 317, pp. 145-154
  • De'Nobili, M.D., Pérez, C.D., Navarro, D.A., Stortz, C.A., Rojas, A.M., Hydrolytic stability of L-(+)-ascorbic acid in low methoxyl pectin films with potential antioxidant activity at food interfaces (2013) Food and Bioprocess Technology, 6, pp. 186-197
  • Dhugga, K.S., Maize biomass yield and composition for biofuels (2007) Crop Science, 47, pp. 2211-2227
  • Fang, J.M., Sun, R.C., Tomkinson, J., Isolation and characterization of hemicelluloses and cellulose from rye straw by alkaline peroxide extraction (2000) Cellulose, 7, pp. 87-107
  • Fissore, E.N., Santo Domingo, C., Pujol, C., Damonte, E., Rojas, A.M., Gerschenson, L.N., Upgrading of residues of bracts, stems and hearts of Cynara cardunculus L. var. scolymus to functional fractions enriched in soluble fiber (2014) Food & Function, 5, pp. 463-470
  • Galanakis, C.M., Emerging technologies for the production of nutraceuticals from agricultural by-products: A viewpoint of opportunities and challenges (2013) Food and Bioproducts Processing, 91, pp. 575-579
  • Gennadios, A., Weller, C.L., Gooding, C.H., Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films (1994) Journal of Food Engineering, 21, pp. 395-409
  • Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1977) Journal of Research of the National Bureau of Standards–A. Physics and Chemistry, 81A (1), pp. 89-96
  • Hatakeyama, H., Hatakeyama, T., Interaction between water and hydrophilic polymers (1998) Thermochimica Acta, 308, pp. 3-22
  • Huang, F.Y., Thermal properties and thermal degradation of cellulose tri-stearate (CTs) (2012) Polymers, 4, pp. 1012-1024
  • Huq, T., Salmieri, S., Khan, A., Khan, R.A., Le Tien, C., Riedl, Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film (2012) Carbohydrate Polymers, 90, pp. 1757-1763
  • Idrovo Encalada, A.M., Basanta, M.F., Fissore, E.N., De'Nobili, M.D., Rojas, A.M., Carrot fiber (CF) composite films for antioxidant preservation: Particle size effect (2016) Carbohydrate Polymers, 136, pp. 1041-1051
  • Larrauri, J., Rupérez, P., Saura-Calixto, F., Mango peel fibres with antioxidant activity (1997) European Food Research and Technology, 205, pp. 39-42
  • Lavelli, V., Kerr, W., Apple pomace is a good matrix for phytochemical retention (2012) Journal of Agriculture and Food Chemistry, 60, pp. 5660-5666
  • Liu, Y., Bandhari, B., Zhou, W., Glass transition and enthalpy relaxation of amorphous food saccharides: a Review (2006) Journal of Agriculture and Food Chemistry, 54, pp. 5701-5717
  • Olagunju, A., Onyike, E., Muhammad, A., Aliyu, S., Abdullahi, A.S., Effects of fungal (Lachnocladium spp.) pretreatment on nutrient and antinutrient composition of corn cobs (2013) African Journal of Biochemistry Research, 7 (11), pp. 210-214
  • Pérez, C.D., De'Nobili, M.D., Rizzo, S.A., Gerschenson, L.N., Descalzo, A.M., Rojas, A.M., High methoxyl pectin-methyl cellulose films with antioxidant activity at a functional food interface (2013) Journal of Food Engineering, 116, pp. 162-169
  • Ping, Z.H., Nguyen, Q.T., Chen, S.M., Zhou, J.Q., Ding, Y.D., States of water in different hydrophilic polymers-DSC and FTIR studies (2001) Polymer, 42 (20), pp. 8461-8467
  • Pulido, R., Pulido Bravo, L., Saura-Calixto, F., Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay (2000) Journal of Agricultural and Food Chemistry, 48, pp. 3396-3402
  • Ramos, O.L., Reinas, I., Silva, S.I., Fernandes, J.C., Cerqueira, M.A., Pereira, R.N., Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom (2013) Food Hydrocolloids, 30, pp. 110-122
  • Shekarabi, A.S., Oromiehie, A.R., Vaziri, V., Ardjmand, M., Safekordi, A.A., Investigation of the effect of nanoclay on the properties of quince seed mucilage edible films (2014) Food Science & Nutrition, 2 (6), pp. 821-827
  • Shi, H., Introducing natural antioxidants (2001) Antioxidants in foods, , J. Pokorny N. Yanishlieva M. Gordon CRC Press, Woodhead Publishing Limited Cambridge Practical applications (pp.149)
  • Shui, G., Leong, L.P., Residue from star fruit as valuable source for functional food ingredients and antioxidant nutraceuticals (2006) Food Chemistry, 97, pp. 277-284
  • Singh, T.P., Chatli, M.K., Sahoo, J., Development of chitosan based edible films: Process optimization using response surface methodology (2015) Journal of Food Science and Technology, 52 (5), pp. 2530-2543
  • Spence, K.L., Venditti, R.A., Rojas, O.J., Pawlak, J.J., Hubbe, M.A., Water vapor barrier properties of coated and filled microfibrillated cellulose composite films (2011) BioResources, 6 (4), pp. 4370-4388
  • Contact angle of water droplets on corona-treated polymer film surfaces (1996), TAPPI 565 pm-96 standard; Träubel, H., Hydrophilic polymers (1999) New materials permeable to water, pp. 134-135. , H. Träubel Springer-Verlag Berlin
  • Uhlin, K.I., Atalla, R.H., Thompson, R.S., Influence of hemicelluloses on the aggregation patterns of bacterial cellulose (1995) Cellulose, 2, pp. 129-144
  • Wessling, B., Electrical conductivity in heterogeneous polymer systems. V (1): Further experimental evidence for a phase transition at the volume concentration (1991) Polymer Engineering & Science, 31 (16), pp. 1200-1206
  • Wilson, R.H., Smith, A.C., Kačuráková, M., Saunders, P.K., Wellner, N., Waldron, K.W., The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy (2000) Plant Physiology, 124, pp. 397-405
  • Xiao, L.P., Sun, Z.J., Shi, Z.J., Xu, F., Sun, R.C., Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production (2011) BioResources, 6 (2), pp. 1576-1598
  • Yang, J., Yu, J., Ma, X., Study on the properties of ethylenebisformamide and sorbitol plasticized corn starch (ESPTPS) (2006) Carbohydrate Polymers, 66, pp. 110-116

Citas:

---------- APA ----------
Bernhardt, D.C., Pérez, C.D., Fissore, E.N., De'Nobili, M.D. & Rojas, A.M. (2017) . Pectin-based composite film: Effect of corn husk fiber concentration on their properties. Carbohydrate Polymers, 164, 13-22.
http://dx.doi.org/10.1016/j.carbpol.2017.01.031
---------- CHICAGO ----------
Bernhardt, D.C., Pérez, C.D., Fissore, E.N., De'Nobili, M.D., Rojas, A.M. "Pectin-based composite film: Effect of corn husk fiber concentration on their properties" . Carbohydrate Polymers 164 (2017) : 13-22.
http://dx.doi.org/10.1016/j.carbpol.2017.01.031
---------- MLA ----------
Bernhardt, D.C., Pérez, C.D., Fissore, E.N., De'Nobili, M.D., Rojas, A.M. "Pectin-based composite film: Effect of corn husk fiber concentration on their properties" . Carbohydrate Polymers, vol. 164, 2017, pp. 13-22.
http://dx.doi.org/10.1016/j.carbpol.2017.01.031
---------- VANCOUVER ----------
Bernhardt, D.C., Pérez, C.D., Fissore, E.N., De'Nobili, M.D., Rojas, A.M. Pectin-based composite film: Effect of corn husk fiber concentration on their properties. Carbohydr Polym. 2017;164:13-22.
http://dx.doi.org/10.1016/j.carbpol.2017.01.031