Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Plasticized cassava starch matrix composites reinforced by a multi-wall carbon nanotube (MWCNT)-hercynite (FeAl2O4) nanomaterial were developed. The hybrid nanomaterial consists of FeAl2O4 nanoparticles anchored strongly to the surface of the MWCNT. This nano-hybrid filler shows an irregular geometry, which provides a strong mechanical interlocking with the matrix, and excellent stability in water, ensuring a good dispersion in the starch matrix. The composite containing 0.04 wt.% of the nano-hybrid filler displays increments of 370% in the Young's modulus, 138% in tensile strength and 350% in tensile toughness and a 70% decrease in water vapor permeability relative to the matrix material. All of these significant improvements are explained in terms of the nano-hybrid filler homogenous dispersion and its high affinity with both plasticizers, glycerol and water, which induces crystallization without deterioration of the tensile toughness. © 2015 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Improving the physical properties of starch using a new kind of water dispersible nano-hybrid reinforcement
Autor:Morales, N.J.; Candal, R.; Famá, L.; Goyanes, S.; Rubiolo, G.H.
Filiación:Instituto de Química Inorgánica, Medio Ambiente y Energía (INQUIMAE), CONICET - UBA, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Laboratorio de Polímeros y Materiales Compuestos, Departamento de Física, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
Gerencia Materiales, Comisión Nacional de Energía Atómica, Avda Gral Paz 1499, San Martín, B1650KNA, Argentina
Palabras clave:Carbon nanotubes; Cassava starch; Hybrid nanomaterial; Polymer nanocomposite; Carbon; Carbon nanotubes; Dispersions; Elastic moduli; Fillers; Multiwalled carbon nanotubes (MWCN); Nanocomposites; Nanostructured materials; Plants (botany); Reinforcement; Solvents; Starch; Strength of materials; Tensile strength; Yarn; Cassava starch; Homogenous dispersions; Hybrid nanomaterials; Irregular geometries; Mechanical interlocking; Multi wall carbon nanotube(MWCNT); Polymer nanocomposite; Water vapor permeability; Polymer matrix composites; Manihot esculenta
Año:2015
Volumen:127
Página de inicio:291
Página de fin:299
DOI: http://dx.doi.org/10.1016/j.carbpol.2015.03.071
Título revista:Carbohydrate Polymers
Título revista abreviado:Carbohydr Polym
ISSN:01448617
CODEN:CAPOD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01448617_v127_n_p291_Morales

Referencias:

  • Angles, M.N., Dufresne, A., Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis (2000) Macromolecules, 33 (22), pp. 8344-8353
  • Antoniou, J., Liu, F., Majeed, H., Qazi, H.J., Zhong, F., Physicochemical and thermomechanical characterization of tara gum edible films: Effect of polyols as plasticizers (2014) Carbohydrate Polymers, 111, pp. 359-365
  • (2002) Annual Book of ASTM, , ASTM D882-02. West Conshohocken, USA: American Society for Testing and Materials
  • (2000) Annual Book of ASTM, , ASTM E96-00. Philadelphia, USA: American Society for Testing and Materials
  • Bian, Z., Chen, G.L., He, G., Hui, X.D., Microstructure and ductile-brittle transition of as-cast Zr-based bulk glass alloys under compressive testing (2001) Materials Science and Engineering A, 316 (1-2), pp. 135-144
  • Bian, Z., He, G., Chen, G.L., Investigation of shear bands under compressive testing for Zr-base bulk metallic glasses containing nanocrystals (2002) Scripta Materialia, 46, pp. 407-412
  • Brekner, M.-J., Schneider, H.A., Cantow, H.-J., Approach to the composition dependence of the glass transition temperature of compatible polymer blends: 1 (1988) Polymer, 29, pp. 78-85
  • Buléon, A., Véronèse, G., Putaux, J.-L., Self-association and crystallization of amylose (2007) Australian Journal of Chemistry, 60, pp. 706-718
  • Cao, R., Naya, S., Artiaga, R., Garciía, A., Varela, A., Logistic approach to polymer degradation in dynamic TGA (2004) Polymer Degradation and Stability, 85 (1), pp. 667-674
  • Carvalho, A.J.F., Starch as source of polymeric materials (2011) Biopolymers: Biomédical and Environmental Applications, pp. 81-98. , S. Kalia, L. Avérous (Eds.) Massachusetts: Scrivener Publishing LLC
  • Chang, P.R., Wu, D., Anderson, D.P., Ma, X., Nanocomposites based on plasticized starch and rectorite clay: Structure and properties (2012) Carbohydrate Polymers, 89 (2), pp. 687-693
  • Dollase, W.A., Correction of intensities for preferred orientation in powder diffractometry: Application of the March model (1986) Journal of Applied Crystallography, 19, pp. 267-272
  • Escobar, M., Goyanes, S., Corcuera, M.A., Eceiza, A., Mondragon, I., Rubiolo, G.H., Purification and functionalization of carbon nanotubes by classical and advanced oxidation processes (2009) Journal of Nanoscience and Nanotechnology, 9 (10), pp. 6228-6233
  • Famá, L., Flores, S.K., Gerschenson, L., Goyanes, S., Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures (2006) Carbohydrate Polymers, 66 (1), pp. 8-15
  • Famá, L.M., Pettarin, V., Goyanes, S.N., Bernal, C.R., Starch/multi-walled carbon nanotubes composites with improved mechanical properties (2011) Carbohydrate Polymers, 83 (3), pp. 1226-1231
  • Famá, L., Rojo, P.G., Bernal, C., Goyanes, S., Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus (2012) Carbohydrate Polymers, 87, pp. 1989-1993
  • Farahnaky, A., Saberi, B., Majzoobi, M., Effect of glycerol on physical and mechanical properties of wheat starch edible films (2013) Journal of Texture Studies, 44, pp. 176-186
  • Farhat, I.A., Blanshard, J.M.V., Mitchell, J.R., The retrogradation of waxy maize starch extrudates: Effects of storage temperature and water content (2000) Biopolymers, 53, pp. 411-422
  • Forssell, P.M., Mikkilä, J.M., Moates, G.K., Parker, R., Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch (1997) Carbohydrate Polymers, 34, pp. 275-282
  • García, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S., A comparison between the physico-chemical properties of tuber and cereal starches (2009) Food Research International, 42, pp. 976-982
  • García, N.L., Ribba, L., Dufresne, A., Aranguren, M., Goyanes, S., Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals (2011) Carbohydrate Polymers, 84, pp. 203-210
  • Godbillot, L., Dole, P., Joly, C., Rogé, B., Mathlouthi, M., Analysis of water binding in starch plasticized films (2006) Food Chemistry, 96, pp. 380-386
  • Goyanes, S., Rubiolo, G.R., Salazar, A., Jimeno, A., Corcuera, M.A., Mondragon, I., Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy (2007) Diamond and Related Materials, 16 (2), pp. 412-417
  • Hansen, N.M.L., Plackett, D., Sustainable films and coatings from hemicelluloses: A review (2008) Biomacromolecules, 9 (6), pp. 1493-1505
  • Kalichevsky, M.T., Blanshard, J.M.V., A study of the effect of water on the glass transition of 1:1 mixtures of amylopectin, casein and gluten using DSC and DMTA (1992) Carbohydrate Polymers, 19, pp. 271-278
  • Kalichevsky, M.T., Jaroszkiewicz, E.M., Ablett, S., Blanshard, J.M.V., Lillford, P.J., The glass transition of amylopectin measured by DSC, DMTA and NMR (1992) Carbohydrate Polymers, 18, pp. 77-88
  • Kalichevsky, M.T., Jaroszkiewicz, E.M., Blanshard, J.M.V., A study of the glass transition of amylopectin-sugar mixtures (1993) Polymer, 34 (2), pp. 346-358
  • Kong, Y., Yuan, J., Qiu, J., Preparation and characterization of aligned carbon nanotubes/polylactic acid composite fibers (2012) Physica B: Condensed Matter, 407 (13), pp. 2451-2457
  • Kraus, W., Nolze, G., POWDER CELL - A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns (1996) Journal of Applied Crystallography, 29, pp. 301-303
  • Kudus, M.H.A., Akil, H.M., Mohamad, H., Loon, L.E., Effect of catalyst calcination temperature on the synthesis of MWCNT-alumina hybrid compound using methane decomposition method (2011) Journal of Alloys and Compounds, 509 (6), pp. 2784-2788
  • Liu, Z., Zhao, L., Chen, M., Yu, J., Effect of carboxylate multi-walled carbon nanotubes on the performance of thermoplastic starch nanocomposites (2011) Carbohydrate Polymers, 83 (2), pp. 447-451
  • March, A., Matematischetheorie des regelungnach der korngestaltbeiaffiner deformation (1932) Zeitschriftfür Kristallographie, 81, pp. 285-297
  • Moates, G.K., Noel, T.R., Parker, R., Ring, S.G., Dynamic mechanical and dielectric characterisation of amylose glycerol films (2001) Carbohydrate Polymers, 44, pp. 247-253
  • Morales Mendoza, N., Goyanes, S., Chiliotte, C., Bekeris, V., Rubiolo, G., Candal, R., Magnetic binary nanofillers (2012) Physica B: Condensed Matter, 407 (16), pp. 3203-3205
  • Morales, N.J., Goyanes, S., Chiliotte, C., Bekeris, V., Candal, R.J., Rubiolo, G.H., One-step chemical vapor deposition synthesis of magnetic CNT-hercynite (FeAl<inf>2</inf>O<inf>4</inf>) hybrids with good aqueous colloidal stability (2013) Carbon, 61, pp. 515-524
  • Müller, C.M.O., Yamashita, F., Laurindo, J.B., Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach (2008) Carbohydrate Polymers, 72 (1), pp. 82-87
  • Nafchi, A.M., Alias, A.K., Mahmud, S., Robal, M., Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide (2012) Journal of Food Engineering, 113 (4), pp. 511-519
  • Nuanmano, S., Prodpran, T., Benjakul, S., Potential use of gelatin hydrolysate as plasticizer in fish myofibrillar protein film (2015) Food Hydrocolloids, 47, pp. 61-68
  • Patterson, A.L., The scherrer formula for X-ray particle size determination (1939) Physical Review, 56, pp. 978-982
  • Perdomo, J., Cova, A., Sandoval, A.J., García, L., Laredo, E., Müller, A.J., Glass transition temperatures and water sorption isotherms of cassava starch (2009) Carbohydrate Polymers, 76 (2), pp. 305-313
  • Prasad, K.E., Das, B., Maitra, U., Ramamurty, U., Rao, C.N.R., Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons (2009) Proceedings of the National Academy of Sciences of the United States of America, 106 (32), pp. 13186-13189
  • Ross, Y., Karel, M., Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions (1991) Journal of Food Science, 56, pp. 1676-1681
  • Schmitt, H., Prashantha, K., Soulestin, J., Lacrampe, M.F., Krawczak, P., Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites (2012) Carbohydrate Polymers, 89 (3), pp. 920-927
  • Sou, K., Nishikawa, K., Koga, Y., Tozaki, K., High-resolution calorimetry on thermal behavior of glycerol (I): Glass transition, crystallization and melting, and discovery of a solid-solid transition (2011) Chemical Physics Letters, 506 (46), pp. 217-220
  • Sternstein, S.S., Yielding in glassy polymers (1975) American Society for Metals: Polymeric Materials: Relationships between Structure and Mechanical Behavior, p. 369. , American Society for Metal Metals Park Ohio
  • Sun, D., Chu, C.-C., Sue, H.-J., Simple approach for preparation of epoxy hybrid nanocomposites based on carbon nanotubes and a model clay (2010) Chemistry of Materials, 22 (12), pp. 3773-3778
  • Swain, S.K., Pradhan, A.K., Sahu, H.S., Synthesis of gas barrier starch by dispersion of functionalized multiwalled carbon nanotubes (2013) Carbohydrate Polymers, 94 (1), pp. 663-668
  • Tian, F., He, C.N., Processing and mechanical properties of carbon nanotube-alumina hybrid reinforced high density polyethylene composites (2011) Materials Research Bulletin, 46 (7), pp. 1143-1147
  • Van Soest, J.J.G., De Wit, D., Tournois, H., Vliegenthart, J.F.G., The influence of glycerol on structural changes in waxy maize starch as studied by Fourier transform infra-red spectroscopy (1994) Polymer, 35 (22), pp. 4722-4727
  • Van Soest, J.J.G., Hulleman, S.H.D., De Wit, D., Vliegenthart, J.F.G., Crystallinity in starch bioplastics (1996) Industrial Crops and Products, 5, pp. 11-22
  • Wilhelm, H.M., Sierakowski, M.R., Souza, G.P., Wypych, F., Starch films reinforced with mineral clay (2003) Carbohydrate Polymers, 52, pp. 101-110
  • Wolock, I., Newman, S.B., Kies, J.A., Fracture phenomena in polymers (1959) Fracture: Proceedings of An International Conference on the Atomic Mechanisms of Fracture, pp. 250-264. , B.L. Averbach, D.K. Felbeck, G.T. Hahn, D.A. Thomas (Eds.), John Wiley and Sons Inc New York, NY
  • Wu, T.M., Chen, E.C., Isothermal and nonisothermal crystallization kinetics of poly(É-caprolactone)/multi-walled carbon nanotube composites (2006) Polymer Engineering & Science, 46 (19), pp. 1309-1317
  • Wynne-Jones, S., Blanshard, J.M.V., Hydration studies of wheat starch, amylopectin, amylose gels and bread by proton magnetic resonance (1986) Carbohydrate Polymers, 6, pp. 289-306
  • Zilli, D., Goyanes, S., Escobar, M.M., Chiliotte, C., Bekeris, V., Cukierman, A.L., Comparative analysis of electric, magnetic, and mechanical properties of epoxy matrix composites with different contents of multiple walled carbon nanotubes (2007) Polymer Composites, 28 (5), pp. 612-617

Citas:

---------- APA ----------
Morales, N.J., Candal, R., Famá, L., Goyanes, S. & Rubiolo, G.H. (2015) . Improving the physical properties of starch using a new kind of water dispersible nano-hybrid reinforcement. Carbohydrate Polymers, 127, 291-299.
http://dx.doi.org/10.1016/j.carbpol.2015.03.071
---------- CHICAGO ----------
Morales, N.J., Candal, R., Famá, L., Goyanes, S., Rubiolo, G.H. "Improving the physical properties of starch using a new kind of water dispersible nano-hybrid reinforcement" . Carbohydrate Polymers 127 (2015) : 291-299.
http://dx.doi.org/10.1016/j.carbpol.2015.03.071
---------- MLA ----------
Morales, N.J., Candal, R., Famá, L., Goyanes, S., Rubiolo, G.H. "Improving the physical properties of starch using a new kind of water dispersible nano-hybrid reinforcement" . Carbohydrate Polymers, vol. 127, 2015, pp. 291-299.
http://dx.doi.org/10.1016/j.carbpol.2015.03.071
---------- VANCOUVER ----------
Morales, N.J., Candal, R., Famá, L., Goyanes, S., Rubiolo, G.H. Improving the physical properties of starch using a new kind of water dispersible nano-hybrid reinforcement. Carbohydr Polym. 2015;127:291-299.
http://dx.doi.org/10.1016/j.carbpol.2015.03.071