Abstract:
In this letter, we propose an inline holographic microscopy (ILHM) system, based on the double-sideband technique (DST), for wavefront imaging. The presented optical system shows all the benefits of the previously reported DST (instantaneous removing of ghost images in an inline scheme) but adapted to a microscopic system. The double-sideband filter is implemented by using a transparent liquid crystal (LC) bi-pixel device. Specifically, by addressing the proper phase values to each half of the LC bi-panel, which is located at the Fourier plane of the holographic system, the conjugate image is removed. What is more, by using a high numerical aperture microscope objective, we achieved the microscopic wavefront holography imaging. Finally, the feasibility of the proposed system is testified by obtaining holographic wavefront images of different objects. © 2018 Elsevier Ltd
Registro:
Documento: |
Artículo
|
Título: | Wavefront imaging by using an inline holographic microscopy system based on a double-sideband filter |
Autor: | Zhang, H.; Monroy-Ramírez, F.A.; Lizana, A.; Iemmi, C.; Bennis, N.; Morawiak, P.; Piecek, W.; Campos, J. |
Filiación: | Departamento de Física, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain Departamento de Física, Universidad Nacional de Colombia, Sede Bogotá Carrera 45 No 26–85, Bogotá D.C., Colombia Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina Military University of Technology, New Technologies and Chemistry Faculty, Gen. W. Urbanowicza 2, 00-908, Warszawa, Poland
|
Palabras clave: | Fourier optics; Holography; Liquid crystals; Microscopy; Wavefront sensing; Adaptive optics; Fourier optics; Liquid crystals; Microscopic examination; Optical systems; Passive filters; Wavefronts; Conjugate image; High numerical apertures; Holographic microscopy; Holographic system; Microscope objective; Microscopic system; Transparent liquids; Wave-front sensing; Holography |
Año: | 2019
|
Volumen: | 113
|
Página de inicio: | 71
|
Página de fin: | 76
|
DOI: |
http://dx.doi.org/10.1016/j.optlaseng.2018.10.003 |
Título revista: | Optics and Lasers in Engineering
|
Título revista abreviado: | Opt Lasers Eng
|
ISSN: | 01438166
|
CODEN: | OLEND
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01438166_v113_n_p71_Zhang |
Referencias:
- Lin, Y., Dong, L., Chen, H., Huang, S., Phase distribution analysis of tissues based on the off-axis digital holographic hybrid reconstruction algorithm (2018) Biomed Opt Express, 9 (1), pp. 1-13
- Plascencia-Villa, G., Ponce, A., Collingwood, J.F., Arellano-Jimenéz, M.J., Zhu, X., Rogers, J.T., Betancourt, I., Perry, G., High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer´s disease (2016) Sci Rep, 6, p. 24873
- Byeon, H., Lee, J., Doh, J., Lee, S.J., Hybrid bright-field and hologram imaging of cell dynamics (2016) Sci Rep, 6, p. 33750
- Byeon, H., Go, T., Lee, S.J., Digital stereo-holographic microscopy for studying three-dimensional particle dynamics (2018) Opt Lasers Eng, 105, pp. 6-13
- Schnell, M., Carney, P.S., Hillenbrand, R., Synthetic optical holography for rapid nanoimaging (2014) Nat Commun, 5, p. 3499
- Verrier, N., Fournier, C., Digital holography super-resolution for accurate three-dimensional reconstruction of particle holograms (2015) Opt Lett, 40 (2), pp. 217-220
- Xia, P., Wang, Q., Ri, S., Tsuda, H., Calibrated phase-shifting digital holography based on a dual-camera system (2017) Opt Lett, 42 (23), pp. 4954-4957
- Kakue, T., Endo, Y., Nishitsuji, T., Shimobaba, T., Masuda, N., Ito, T., Digital holographic high-speed 3D imaging for the vibrometry of fast-occurring phenomenon (2017) Sci Rep, 7, p. 10413
- Di, J., Zhao, J., Jiang, H., Zhang, P., Fan, Q., Sun, W., High resolution digital holographic microscopy with a wide field of view on a synthetic aperture technique and use of linear CCD scanning (2008) Appl Opt, 47 (30), pp. 5654-5659
- Garcia-Sucerquia, J., Xu, W., Jericho, M.H., Kruezer, H.J., Immersion digital in-line holographic microscopy (2006) Opt Lett, 31 (9), pp. 1211-1213
- Singh, D.K., Ahrens, C.C., Li, W., Vanapalli, S.A., Label-free fingerprinting of tumor cells in bulk flow using inline digital holographic microscopy (2017) Biomed Opt Express, 8 (2), pp. 536-554
- Kim, K., Park, Y., Fourier transform light scattering angular spectroscopy using digital inline holography (2012) Opt Lett, 37 (19), pp. 4161-4163
- Micó, V., García, J., Zalevsky, Z., Javidi, B., Phase-shifting Gabor holography (2009) Opt Lett, 34 (10), pp. 1492-1494
- Micó, V., Zalevsky, Z., Garcia, J., Superresolved common-path phase-shifting digital inline holographic microscopy using a spatial light modulator (2012) Opt Lett, 37 (23), pp. 4988-4990
- Rostykus, M., Moser, C., Compact lensless off-axis transmission digital holographic microscope (2017) Opt Express, 25 (14), pp. 16652-16659
- Wallace, J.K., Rider, S., Serabyn, E., Kühn, J., Liewer, K., Deming, J., Showalter, G., Nadeau, J., Robust, compact implementation of an off-axis digital holographic microscope (2015) Opt Express, 23 (13), pp. 17367-17378
- Gabor, D., A new microscopic principle (1948) Nature, 4098, pp. 777-778
- Sánchez-Ortiga, E., Doblas, A., Saavedra, G., Martínez-Corral, M., Garcia-Sucerquia, J., Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit (2014) Appl Opt, 53 (10), pp. 2058-2066
- Marim, M., Angelini, E., Olivo-Marin, J.C., Atlan, M., Off-axis compressed holographic microscopy in low-light conditions (2011) Opt Lett, 36 (1), pp. 79-81
- Witte, S., Plauşka, A., Ridder, M.C., van Berge, L., Mansvelder, H.D., Groot, M.L., Short-coherence off-axis holographic phase microscopy of live cell dynamics (2012) Biomed Opt Express, 3 (9), pp. 2184-2189
- Dubois, F., Yourassowsky, C., Full off-axis red-green-blue digital holographic microscope with LED illumination (2012) Opt Lett, 37 (12), pp. 2190-2192
- Meng, H., Hussain, F., In-line recording and off-axis viewing technique for holographic particle velocimetry (1995) Appl Opt, 34 (11), pp. 1827-1840
- Xu, L., Peng, X., Miao, J., Asundi, A.K., Studies of digital microscopic holography with applications to microstructure testing (2001) Appl Opt, 40 (28), pp. 5046-5051
- Micó, V., Zalevsky, Z., García, J., Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution (2008) Opt Commun, 281 (17), pp. 4273-4281
- Micó, V., García-Monreal, J., Zalevsky, Z., Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics (2009) J Nanophotonics, 3 (1)
- Ma, L., Wang, H., Li, Y., Jin, H., Partition calculation for zero-order and conjugate image removal in digital in-line holography (2012) Opt Express, 20 (2), pp. 1805-1815
- Mishina, T., Okano, F., Yuyama, I., Time-alternating method based on single-sideband holography with half-zone-plate processing for the enlargement of viewing zones (1999) Appl Opt, 38 (17), pp. 3703-3713
- Palero, V., Lobera, J., Andrés, N., Arroyo, M.P., Shifted knife-edge aperture digital in-line holography for fluid velocimetry (2014) Opt Lett, 39 (11), pp. 3356-3359
- Takaki, Y., Tanemoto, Y., Band-limited zone plates for single-sideband holography (2009) Appl Opt, 48 (34), pp. H64-H70
- Ramirez, C., Lizana, A., Iemmi, C., Campos, J., Inline digital holographic movie based on a double-sideband filter (2015) Opt Lett, 40 (17), pp. 4142-4145
- Ramirez, C., Lizana, A., Iemmi, C., Campos, J., Method based on the double sideband technique for the dynamic tracking of micrometric particles (2016) J. Optics, 18
- Pedrini, G., Osten, W., Zhang, Y., Wave-front reconstruction from a sequence of interferograms recorded at different planes (2005) Opt Lett, 30 (8), pp. 833-835
- Grilli, S., Ferraro, P., De Nicola, S., Finizio, A., Pierattini, G., Meucci, R., Whole optical wavefields reconstruction by digital holography (2001) Opt Express, 9 (6), pp. 294-302
- Volkov, V.V., Zhu, Y., Deterministic phase unwrapping in the presence of noise (2003) Opt Lett, 28 (22), pp. 2156-2258
Citas:
---------- APA ----------
Zhang, H., Monroy-Ramírez, F.A., Lizana, A., Iemmi, C., Bennis, N., Morawiak, P., Piecek, W.,..., Campos, J.
(2019)
. Wavefront imaging by using an inline holographic microscopy system based on a double-sideband filter. Optics and Lasers in Engineering, 113, 71-76.
http://dx.doi.org/10.1016/j.optlaseng.2018.10.003---------- CHICAGO ----------
Zhang, H., Monroy-Ramírez, F.A., Lizana, A., Iemmi, C., Bennis, N., Morawiak, P., et al.
"Wavefront imaging by using an inline holographic microscopy system based on a double-sideband filter"
. Optics and Lasers in Engineering 113
(2019) : 71-76.
http://dx.doi.org/10.1016/j.optlaseng.2018.10.003---------- MLA ----------
Zhang, H., Monroy-Ramírez, F.A., Lizana, A., Iemmi, C., Bennis, N., Morawiak, P., et al.
"Wavefront imaging by using an inline holographic microscopy system based on a double-sideband filter"
. Optics and Lasers in Engineering, vol. 113, 2019, pp. 71-76.
http://dx.doi.org/10.1016/j.optlaseng.2018.10.003---------- VANCOUVER ----------
Zhang, H., Monroy-Ramírez, F.A., Lizana, A., Iemmi, C., Bennis, N., Morawiak, P., et al. Wavefront imaging by using an inline holographic microscopy system based on a double-sideband filter. Opt Lasers Eng. 2019;113:71-76.
http://dx.doi.org/10.1016/j.optlaseng.2018.10.003