Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We determine the calcium fluxes through inositol 1,4,5-trisphosphate receptor/channels underlying calcium puffs of Xenopus laevis oocytes using a simplified version of the algorithm of Ventura et al. [1]. An analysis of 130 puffs obtained with Fluo-4 indicates that Ca2+ release comes from a region of width ∼450 nm, that the release duration is peaked around 18 ms and that the underlying Ca2+ currents range between 0.12 and 0.95 pA. All these parameters are independent of IP3 concentration. We explore what distributions of channels that open during a puff, Np, and what relations between current and number of open channels, I(Np), are compatible with our findings and with the distribution of puff-to-trigger amplitude ratio reported in Rose et al. [2]. To this end, we use simple "mean field" models in which all channels open and close simultaneously. We find that the variability among clusters plays an important role in shaping the observed puff amplitude distribution and that a model for which I(Np) ∼ Np for small Np and I (Np) ∼ Np 1 / α (α > 1) for large Np, provides the best agreement. Simulations of more detailed models in which channels open and close stochastically show that this nonlinear behavior can be attributed to the limited time resolution of the observations and to the averaging procedure that is implicit in the mean-field models. These conclusions are also compatible with observations of ∼400 puffs obtained using the dye Oregon green. © 2009 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes
Autor:Bruno, L.; Solovey, G.; Ventura, A.C.; Dargan, S.; Dawson, S.P.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires, Argentina
Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, United States
Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4550, United States
CONICET, Argentina
Palabras clave:Backward methods; Calcium fluxes; Confocal microscopy; IP3Rs; Puffs; Xenopus laevis; calcium ion; dye; inositol 1,4,5 trisphosphate receptor; algorithm; animal cell; article; calcium current; calcium transport; controlled study; nonhuman; oocyte; priority journal; simulation; statistical model; Xenopus laevis; Neptunia; Xenopus laevis
Año:2010
Volumen:47
Número:3
Página de inicio:273
Página de fin:286
DOI: http://dx.doi.org/10.1016/j.ceca.2009.12.012
Título revista:Cell Calcium
Título revista abreviado:Cell Calcium
ISSN:01434160
CODEN:CECAD
CAS:calcium ion, 14127-61-8
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01434160_v47_n3_p273_Bruno

Referencias:

  • Ventura, A.C., Bruno, L., Demuro, A., Parker, I., Dawson, S.P., A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients (2005) Biophys. J., 88, pp. 2403-2421
  • Rose, H.J., Dargan, S., Shuai, J., Parker, I., 'Trigger' events precede calcium puffs in Xenopus oocytes (2006) Biophys. J., 91, pp. 4024-4032
  • Callamaras, N., Parker, I., Radial localization of inositol 1,4,5-trisphosphate-sensitive Ca2+ release sites in Xenopus oocytes resolved by axial confocal linescan imaging (1999) J. Gen. Physiol., 113, pp. 199-213
  • Shuai, J., Rose, H.J., Parker, I., The number and spatial distribution of IP3 receptors underlying calcium puffs in Xenopus oocytes (2006) Biophys. J., 91, pp. 4033-4044
  • Swillens, S., Dupont, G., Combettes, L., Champeil, P., From calcium blips to calcium puffs: theoretical analysis of the requirements for interchannel communication (1999) Proc. Natl. Acad. Sci. U.S.A., 96, pp. 13750-13755
  • Sun, X.P., Callamaras, N., Marchant, J.S., Parker, I., A continuum of InsP3-mediated elementary Ca2+ signalling events in Xenopus oocytes (1998) J. Physiol., 509 (PART 1), pp. 67-80
  • Thul, R., Falcke, M., Release currents of IP(3) receptor channel clusters and concentration profiles (2004) Biophys. J., 86, pp. 2660-2673
  • Smith, G.D., Pearson, J.E., Keizer, J., Modeling intracellular calcium waves and sparks (2002) Computational Cell Biology, , Fall C.P., Marland E.S., Wagner J.M., and Tyson J.J. (Eds), Springer, New York
  • Rios, E., Brum, G., Ca2+ release flux underlying Ca2+ transients and Ca2+ sparks in skeletal muscle (2002) Front. Biosci., 7, pp. d1195-d1211
  • Smith, I.F., Parker, I., Imaging the quantal substructure of single IP3R channel activity during Ca2+ puffs in intact mammalian cells (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 6404-6409
  • Smith, I.F., Wiltgen, S.M., Parker, I., Localization of puff sites adjacent to the plasma membrane: functional and spatial characterization of Ca2+ signaling in SH-SY5Y cells utilizing membrane-permeant caged IP3 (2009) Cell Calcium, 45, pp. 65-76
  • Demuro, A., Parker, I., Optical patch-clamping: single-channel recording by imaging Ca2+ flux through individual muscle acetylcholine receptor channels (2005) J. Gen. Physiol., 126, pp. 179-192
  • Blatter, L.A., Huser, J., Rios, E., Sarcoplasmic reticulum Ca2+ release flux underlying Ca2+ sparks in cardiac muscle (1997) Proc. Natl. Acad. Sci. U.S.A., 94, pp. 4176-4181
  • Rios, E., Stern, M.D., Gonzalez, A., Pizarro, G., Shirokova, N., Calcium release flux underlying Ca2+ sparks of frog skeletal muscle (1999) J. Gen. Physiol., 114, pp. 31-48
  • Soeller, C., Cannell, M.B., Estimation of the sarcoplasmic reticulum Ca2+ release flux underlying Ca2+ sparks (2002) Biophys. J., 82, pp. 2396-2414
  • Baylor, S.M., Hollingworth, S., Chandler, W.K., Comparison of simulated and measured calcium sparks in intact skeletal muscle fibers of the frog (2002) J. Gen. Physiol., 120, pp. 349-368
  • Ventura, A.C., Bruno, L., Ponce, S., Dawson, Probing a reduced equation for intracellular calcium dynamics (2004) Phys. A: Stat. Mech. Appl., 342, pp. 281-287
  • Ventura, A.C., Bruno, L., Dawson, S.P., Simple data-driven models of intracellular calcium dynamics with predictive power (2006) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 74, p. 011917
  • Parker, I., Callamaras, N., Wier, W.G., A high-resolution, confocal laser-scanning microscope and flash photolysis system for physiological studies (1997) Cell Calcium, 21, pp. 441-452
  • Callamaras, N., Parker, I., Caged inositol 1,4,5-trisphosphate for studying release of Ca2+ from intracellular stores (1998) Methods Enzymol., 291, pp. 380-403
  • Cheng, H., Song, L.S., Shirokova, N., Gonzalez, A., Lakatta, E.G., Rios, E., Stern, M.D., Amplitude distribution of calcium sparks in confocal images: theory and studies with an automatic detection method (1999) Biophys. J., 76, pp. 606-617
  • Baran, I., Characterization of local calcium signals in tubular networks of endoplasmic reticulum (2007) Cell Calcium, 42, pp. 245-260
  • Smith, G.D., Dai, L., Miura, R.M., Sherman, A., Asymptotic analysis of buffered calcium diffusion near a point source (2001) SIAM J. Appl. Math., 61, pp. 1816-1838
  • Solovey, G., Fraiman, D., Pando, B., Ponce, S., Dawson, Simplified model of cytosolic Ca2+ dynamics in the presence of one or several clusters of Ca2+-release channels (2008) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 78, p. 041915
  • De Young, G.W., Keizer, J., A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration (1992) Proc. Natl. Acad. Sci. U.S.A., 89, pp. 9895-9899
  • Groff, J.R., Smith, G.D., Calcium-dependent inactivation and the dynamics of calcium puffs and sparks (2008) J. Theor. Biol., 253, pp. 483-499
  • Fraiman, D., Pando, B., Dargan, S., Parker, I., Dawson, S.P., Analysis of puff dynamics in oocytes: interdependence of puff amplitude and interpuff interval (2006) Biophys. J., 90, pp. 3897-3907
  • Allbritton, N.L., Meyer, T., Stryer, L., Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate (1992) Science, 258, pp. 1812-1815
  • Conover, W.J., (1999) Practical Nonparametric Statistics, , Wiley, New York
  • Rios, E., Shirokova, N., Kirsch, W.G., Pizarro, G., Stern, M.D., Cheng, H., Gonzalez, A., A preferred amplitude of calcium sparks in skeletal muscle (2001) Biophys. J., 80, pp. 169-183
  • Izu, L.T., Wier, W.G., Balke, C.W., Theoretical analysis of the Ca2+ spark amplitude distribution (1998) Biophys. J., 75, pp. 1144-1162
  • Falcke, M., On the role of stochastic channel behavior in intracellular Ca2+ dynamics (2003) Biophys. J., 84, pp. 42-56
  • Shuai, J.W., Jung, P., Stochastic properties of Ca(2+) release of inositol 1,4,5-trisphosphate receptor clusters (2002) Biophys. J., 83, pp. 87-97
  • Shuai, J., Parker, I., Optical single-channel recording by imaging Ca2+ flux through individual ion channels: theoretical considerations and limits to resolution (2005) Cell Calcium, 37, pp. 283-299

Citas:

---------- APA ----------
Bruno, L., Solovey, G., Ventura, A.C., Dargan, S. & Dawson, S.P. (2010) . Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes. Cell Calcium, 47(3), 273-286.
http://dx.doi.org/10.1016/j.ceca.2009.12.012
---------- CHICAGO ----------
Bruno, L., Solovey, G., Ventura, A.C., Dargan, S., Dawson, S.P. "Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes" . Cell Calcium 47, no. 3 (2010) : 273-286.
http://dx.doi.org/10.1016/j.ceca.2009.12.012
---------- MLA ----------
Bruno, L., Solovey, G., Ventura, A.C., Dargan, S., Dawson, S.P. "Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes" . Cell Calcium, vol. 47, no. 3, 2010, pp. 273-286.
http://dx.doi.org/10.1016/j.ceca.2009.12.012
---------- VANCOUVER ----------
Bruno, L., Solovey, G., Ventura, A.C., Dargan, S., Dawson, S.P. Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes. Cell Calcium. 2010;47(3):273-286.
http://dx.doi.org/10.1016/j.ceca.2009.12.012