Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Piezoelectric materials are usually characterized using resonant methods. However, piezoelectric polymers are used in broadband devices, thus requiring characterization over a wide range of frequencies. In this work, we present a non-resonant method for the broadband electromechanical characterization of piezoelectric polymer thin films. The procedure is based on measuring the complex capacitance of a sample of known geometry under three conditions: free, blocked and immersed in a fluid of known acoustic properties. The behaviour of the sample under study is modelled as a one-dimensional transducer and treated as a two-port network that relates the measurable electrical and mechanical variables. Also, the sample is considered as a free-space radiator when immersed in a fluid. The method determines the intensive and the equivalent circuit parameters of piezoelectric polymer films, allowing the characterization of elastic and electrical properties in a broad frequency range. In order to test the method, we performed isothermal capacitance measurements on a sample of poly(vinylidene fluoride) at a temperature of 298 K. The sample was measured along the direction of the poling field and in the frequency range from 10 Hz to 10 MHz. The results given by the method agree with those reported by other authors. © 2014 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Electromechanical characterization of piezoelectric polymer thin films in a broad frequency range
Autor:Gonzalez, M.G.; Sorichetti, P.A.; Brazzano, L.C.; Santiago, G.D.
Filiación:Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
Grupo de Sistemas Dispersos-Laboratorio de Sistemas Líquidos (GSD-LSL), Departamento de Física, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV, Buenos Aires, Argentina
Palabras clave:Broadband electromechanical characterization; Clamped piezoelectric; Elastic compliance; Medical imaging; Permittivity; Piezoelectric thin films; Poly(vinylidene fluoride) - PVDF; Ultrasonic transducers; Acoustic properties; Capacitance measurement; Characterization; Complex networks; Electric properties; Medical imaging; Permittivity; Polymer films; Transducers; Ultrasonic transducers; Broad frequency range; Clamped piezoelectric; Elastic compliance; Equivalent circuit parameter; Piezoelectric polymer film; Piezoelectric polymers; Piezoelectric thin films; Poly(vinylidene fluoride); Piezoelectricity
Año:2014
Volumen:37
Página de inicio:163
Página de fin:169
DOI: http://dx.doi.org/10.1016/j.polymertesting.2014.05.014
Título revista:Polymer Testing
Título revista abreviado:Polym Test
ISSN:01429418
CODEN:POTED
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01429418_v37_n_p163_Gonzalez

Referencias:

  • Ohigashi, H., Electromechanical properties of polarized polyvinylidene fluoride films as studied by the piezoelectric resonance method (1976) J. Appl. Phys., 47, p. 949
  • Lerch, R., Electroacoustic properties of piezopolymer microphones (1981) J. Acoust. Soc. Am., 69, p. 1809
  • Bacon, D.R., Characteristics of a PVDF membrane hydrophone for use in the range 1-100 MHz (1982) IEEE Trans. Sonics Ultrason., 29 SU-, p. 18
  • Bleeker, H.J., Lewin, P.A., A novel method for determining calibration and behaviour of PVDF ultrasonic hydrophone probes in the frequency range up to 100 MHz (2000) IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 47, p. 1354
  • Kwok, K.W., Wah Chan, H.L., Choy, C.L., Evaluation of the material parameters of piezoelectric materials by various methods (1997) IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 44, p. 733
  • Dahiya, R.S., Valle, M., Lorenzelli, L., SPICE model for lossy piezoelectric polymers (2009) IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 56, p. 387
  • (1978) IEEE Standard on Piezoelectricity, , IEEE Std. 176-1978 The Institute of Electrical and Electronics Engineers New York
  • Smits, J.G., Iterative method for accurate determination of the real and imaginary parts of the materials coefficients of piezoelectric ceramics (1976) IEEE Trans. Sonics Ultrason., 23 SU-, p. 393
  • Sherrit, S., Wiederick, H.D., Mukherjee, B.K., Non-iterative evaluation of the real and imaginary material constants of piezoelectric resonators (1992) Ferroelectrics, 134, p. 111
  • Kinsler, L.E., Frey, A.R., Coppens, A.B., Sanders, J.V., (2000) Fundamentals of Acoustics, , John Wiley & Sons New York
  • Uchino, K., Loss mechanisms in piezoelectrics: How to measure different losses separately (2001) IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 48, p. 307
  • Broadhurst, M.G., Davis, G.T., McKinney, J.E., Collins, R.E., Piezoelectricity and pyroelectricity in polyvinylidene fluoride - A model (1978) J. Appl. Phys., 49, p. 4992
  • Corach, J., Sorichetti, P.A., Romano, S.D., Electrical properties of vegetables oils between 20 Hz and 2 MHz (2014) Int. J. Hydrogen Energy, 39, p. 8754
  • Sorichetti, P.A., Matteo, C.L., Low-frequency dielectric measurements of complex fluids using high-frequency coaxial sample cells (2007) Measurement, 40, p. 437
  • Ciocci Brazzano, L., Sorichetti, P.A., Santiago, G.D., González, M.G., Broadband dielectric characterization of piezoelectric poly(vinylidene fluoride) thin films between 278 K and 308 K (2013) Polym. Test., 32, p. 1186
  • Havriliak, S., Negami, S., A complex plane analysis of α-dispersions in some polymer systems (1966) J. Polym. Sci. Polym. Sym., 14, p. 99
  • Mellow, T., On the sound field of a resilient disk in free space (2008) J. Acoust. Soc. Am, 123, p. 1880
  • Thompson, M.L., (2002) On the Material Properties and Constitutive Equations of Piezoelectric Poly Vinylidene Fluoride (PVDF), , Ph.D. dissertation Drexel University Philadelphia, Pennsylvania, USA
  • Bauer, F., PVDF shock sensors: Applications to polar materials and high explosives (2000) IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 47, p. 1448
  • Mocellini, R.R., Zelada-Lambri, G.I., Lambri, O.A., Matteo, C.L., Sorichetti, P.A., Electrorheological description of liquid and solid dielectrics applied to two-phase polymers: A study of EPDM (2006) IEEE Trans. Dielectr. Electr. Insul., 13, p. 1358
  • Bune, A.V., Zho, C., Ducharme, S., Blinov, L.M., Fridkin, V.M., Palto, S.P., Petukhova, N.G., Yudin, S.G., Piezoelectric and pyroelectric properties of ferroelectric Langmuir-Blodgett polymer films (1999) J. Appl. Phys., 85, p. 7869

Citas:

---------- APA ----------
Gonzalez, M.G., Sorichetti, P.A., Brazzano, L.C. & Santiago, G.D. (2014) . Electromechanical characterization of piezoelectric polymer thin films in a broad frequency range. Polymer Testing, 37, 163-169.
http://dx.doi.org/10.1016/j.polymertesting.2014.05.014
---------- CHICAGO ----------
Gonzalez, M.G., Sorichetti, P.A., Brazzano, L.C., Santiago, G.D. "Electromechanical characterization of piezoelectric polymer thin films in a broad frequency range" . Polymer Testing 37 (2014) : 163-169.
http://dx.doi.org/10.1016/j.polymertesting.2014.05.014
---------- MLA ----------
Gonzalez, M.G., Sorichetti, P.A., Brazzano, L.C., Santiago, G.D. "Electromechanical characterization of piezoelectric polymer thin films in a broad frequency range" . Polymer Testing, vol. 37, 2014, pp. 163-169.
http://dx.doi.org/10.1016/j.polymertesting.2014.05.014
---------- VANCOUVER ----------
Gonzalez, M.G., Sorichetti, P.A., Brazzano, L.C., Santiago, G.D. Electromechanical characterization of piezoelectric polymer thin films in a broad frequency range. Polym Test. 2014;37:163-169.
http://dx.doi.org/10.1016/j.polymertesting.2014.05.014