Artículo

Artículo de Acceso Abierto. Puede ser descargado en su versión final
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Although there have been many ecological field studies on the key components of planktonic food webs, there are still gaps in knowledge on some groups, environments and seasons. This is the first report on the spatial distribution of the density and biomass of almost all the taxonomic groups and size fractions of protozooplankton across a cold-temperate shelf during winter. Twenty-eight stations (two or three depths) were sampled on four cross-shelf transects in Patagonian waters (south-western Atlantic; 47-55°S, 60-69°W) during September 2006. Loricate ciliates, radiolarians and foraminiferans showed the lowest densities, and were distributed mainly in coastal, slope or the whole shelf waters, respectively. The density and biomass of aloricate ciliates and heterotrophic nanoflagellates and dinoflagellates were low and homogeneous both vertically and across the shelf south of 51°S, but peaked in the upper 40 m in offshore waters at 47°S. Microplanktonic aloricate ciliates, which represented 53% of the total protozooplankton biomass, reached values as high as 16 μg CL-1 on the last transect. Consequently, both protozooplankton biomass and its ratio to chlorophyll a concentration were significantly higher in the northern offshore waters. These trends were linked to higher subsurface temperature and chlorophyll a concentration, and lower copepod nauplii biomass. Our results probably reflect changes in both the availability of food resources and predators and the physical structure of the water column, which are a consequence of the different environmental conditions that coexist over the large latitudinal and longitudinal gradients covered during late winter. © The Author 2010.

Registro:

Documento: Artículo
Título:Bathymetric, latitudinal and vertical distribution of protozooplankton in a cold-temperate shelf (southern Patagonian waters) during winter
Autor:Santoferrara, L.F.; Gómez, M.I.; Alder, V.A.
Filiación:Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ Buenos Aires, Argentina
Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
Instituto Antártico Argentino, Cerrito 1248, C1010AAZ Buenos Aires, Argentina
Palabras clave:cross-shelf distribution; latitudinal gradient; protozooplankton; southern Patagonian waters; winter; bathymetry; biomass; chlorophyll a; ciliate; continental shelf; crustacean; dinoflagellate; food availability; food web; latitudinal gradient; longitudinal gradient; radiolaria; taxonomy; vertical distribution; water column; winter; zooplankton; Atlantic Ocean; Patagonian Shelf; Ciliophora; Copepoda; Dinophyceae; Foraminifera; Radiolaria (protozoans)
Año:2011
Volumen:33
Número:3
Página de inicio:457
Página de fin:468
DOI: http://dx.doi.org/10.1093/plankt/fbq128
Handle:http://hdl.handle.net/20.500.12110/paper_01427873_v33_n3_p457_Santoferrara
Título revista:Journal of Plankton Research
Título revista abreviado:J. Plankton Res.
ISSN:01427873
CODEN:JPLRD
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_01427873_v33_n3_p457_Santoferrara.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01427873_v33_n3_p457_Santoferrara

Referencias:

  • Aberle, N., Lengfellner, K., Sommer, U., Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming (2007) Oecologia, 150 (4), pp. 668-681. , DOI 10.1007/s00442-006-0540-y
  • Barria De Cao, M.S., Beigt, D., Piccolo, C., Temporal variability of diversity and biomass of tintinnids (Ciliophora) in a southwestern Atlantic temperate estuary (2005) Journal of Plankton Research, 27 (11), pp. 1103-1111. , DOI 10.1093/plankt/fbi077
  • Beers, J., Stewart, G., Numerical abundance and estimated biomass of microzoopolankton. Part VI (1970) Bull. Scripps Inst. Oceanogr. Univ. Calif., 17, pp. 67-87
  • Behrenfeld, M.J., Falkowski, P.G., Photosynthetic rates derived from satellite-based chlorophyll concentration (1997) Limnology and Oceanography, 42 (1), pp. 1-20
  • Boltovskoy, D., (1999) South Atlantic Zooplankton, , Backhuys Publishers, Leiden
  • Calbet, A., The trophic roles of microzooplankton in marine systems (2008) ICES Journal of Marine Science, 65 (3), pp. 325-331. , DOI 10.1093/icesjms/fsn013
  • Calbet, A., Saiz, E., The ciliate-copepod link in marine ecosystems (2005) Aquatic Microbial Ecology, 38 (2), pp. 157-167
  • Calvo-Díaz, A., Morán, X.A.G., Suárez, L.A., Seasonality of picophytoplankton chlorophyll a and biomass in the central Cantabrian Sea, southern Bay of Biscay (2008) J. Mar. Syst., 72, pp. 271-281
  • Cuevas, L.A., Daneri, G., Jacob, B., Montero, P., Microbial abundance and activity in the seasonal upwelling area off Concepción (∼36°S), central Chile: A comparison of upwelling and non-upwelling conditions (2004) Deep-Sea Research Part II: Topical Studies in Oceanography, 51 (20-21), pp. 2427-2440. , DOI 10.1016/j.dsr2.2004.07.026, PII S0967064504001705
  • Cuevas, L., Alder, V., Santoferrara, L., Nanoplancton (2009) Manual de Métodos Para El Estudio de Sistemas Planctónicos Marinos, pp. 65-93. , Alder, V. and Morales, C. (eds), Eudeba, Buenos Aires
  • Cushing, D.H., A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified (1989) J. Plankton Res., 11, pp. 1-13
  • Dolan, J.R., Vidussi, F., Claustre, H., Planktonic ciliates in the Mediterranean Sea: Longitudinal trends (1999) Deep-Sea Research Part I: Oceanographic Research Papers, 46 (12), pp. 2025-2039. , DOI 10.1016/S0967-0637(99)00043-6, PII S0967063799000436
  • Edwards, E.S., Burkill, P.H., Abundance, biomass and distribution of microzooplankton in the Irish Sea (1995) Journal of Plankton Research, 17 (4), pp. 771-782
  • Fileman, E., Cummings, D., Llewellyn, C., Microplankton community structure and the impact of microzooplankton grazing during an Emiliania huxleyi bloom, off the Devon coast (2002) J. Mar. Biol. Assoc. UK, 82, pp. 359-368
  • Fileman, E., Smith, T., Harris, R., Grazing by Calanus helgolandicus and Para-Pseudocalanus spp. on phytoplankton and protozooplankton during the spring bloom in the Celtic Sea (2007) Journal of Experimental Marine Biology and Ecology, 348 (1-2), pp. 70-84. , DOI 10.1016/j.jembe.2007.04.003, PII S0022098107001827
  • Fileman, E., Petropavlovsky, A., Harris, R., Grazing by the copepods Calanus helgolandicus and Acartia clausi on the protozooplankton community at station L4 in the Western English Channel (2010) J. Plankton Res., 32, pp. 709-724
  • Gasol, J.M., Duarte, C.M., Comparative analyses in aquatic microbial ecology: How far do they go? (2000) FEMS Microbiology Ecology, 31 (2), pp. 99-106. , DOI 10.1016/S0168-6496(99)00090-2, PII S0168649699000902
  • Granda, A.P., Anadón Lvarez Á, R.A., The annual cycle of nanoflagellates in the Central Cantabrian Sea (Bay of Biscay) (2008) J. Mar. Syst., 72, pp. 298-308
  • Hansen, B., Bjornsen, P.K., Hansen, P.J., The size ratio between planktonic predators and their prey (1994) Limnology and Oceanography, 39 (2), pp. 395-403
  • Irigoien, X., Flynn, K.J., Harris, R.P., Phytoplankton blooms: A 'loophole' in microzooplankton grazing impact? (2005) Journal of Plankton Research, 27 (4), pp. 313-321. , DOI 10.1093/plankt/fbi011
  • Jeffrey, S.W., Humphrey, G.F., New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton (1975) Biochemie und Physiologie der Pflanzen, 167, pp. 191-194
  • Jeong, H.J., The ecological roles of heterotrophic dinoflagellates in marine planktonic community (1999) Journal of Eukaryotic Microbiology, 46 (4), pp. 390-396
  • Johnson, M.D., Stoecker, D.K., Role of feeding in growth and photophysiology of Myrionecta rubra (2005) Aquatic Microbial Ecology, 39 (3), pp. 303-312
  • Kuuppo, P., Autio, R., Kuosa, H., Setala, O., Tanskanen, S., Nitrogen, silicate and zooplankton control of the planktonic food-web in spring (1998) Estuarine, Coastal and Shelf Science, 46 (1), pp. 65-75. , DOI 10.1006/ecss.1997.0258
  • Leakey, R.J.G., Leadbeater, B.S.C., Mitchell, E., McCready, S.M.M., Murray, A.W.A., The abundance and biomass of choanoflagellates and other nanoflagellates in waters of contrasting temperature to the north-west of South Georgia in the Southern Ocean (2002) European Journal of Protistology, 38 (4), pp. 333-350. , DOI 10.1078/0932-4739-00860
  • Legendre, L., Rassoulzadegan, F., Food-web mediated export of biogenic carbon in oceans: Hydrodynamic control (1996) Mar. Ecol. Prog. Ser., 145, pp. 179-193
  • Levinsen, H., Nielsen, T.G., The trophic role of marine pelagic ciliates and heterotrophic dinoflagellates in arctic and temperate coastal ecosystems: A cross-latitude comparison (2002) Limnology and Oceanography, 47 (2), pp. 427-439
  • Liu, H., Dagg, M.J., Strom, S., Grazing by the calanoid copepod Neocalanus cristatus on the microbial food web in the coastal Gulf of Alaska (2005) Journal of Plankton Research, 27 (7), pp. 647-662. , DOI 10.1093/plankt/fbi039
  • Lynn, D., Small, E., Ciliophora (2002) The Illustrated Guide to the Protozoa, pp. 371-656. , Lee, J., Leedale, G. and Bradbury, P. (eds), Lawrence, Kansas
  • Margalef, R., Life-forms of phytoplankton as survival alternative in an unstable environment (1978) Oceanol. Acta, 1, pp. 493-509
  • McManus, G.B., Fuhrman, J.A., Mesoscale and seasonal variability of heterotrophic nanoflagellate abundance in an estuarine outflow plume (1990) Mar. Ecol. Prog. Ser., 61, pp. 207-213
  • Menden-Deuer, S., Lessard, E.J., Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton (2000) Limnology and Oceanography, 45 (3), pp. 569-579
  • Modigh, M., Castaldo, S., Variability and persistence in tintinnid assemblages at a Mediterranean coastal site (2002) Aquatic Microbial Ecology, 28 (3), pp. 299-311
  • Montagnes, D.J.S., Poulton, A.J., Shammon, T.M., Mesoscale, finescale and microscale distribution of micro- and nanoplankton in the irish Sea, with emphasis on ciliates and their prey (1999) Marine Biology, 134 (1), pp. 167-179. , DOI 10.1007/s002270050535
  • Montagnes, D.J.S., Allen, J., Brown, L., Factors controlling the abundance and size distribution of the phototrophic ciliate Myrionecta rubra in open waters of the North Atlantic (2008) J. Eukaryot. Microbiol., 55, pp. 457-465
  • Montagnes, D.J.S., Dower, J.F., Figueiredo, G.M., The protozooplankton-ichthyoplankton trophic link: An overlooked aspect of aquatic food webs (2010) J. Eukaryot. Microbiol., 57, pp. 223-228
  • Montagnes, D.J.S., Allen, J., Brown, L., Role of ciliates and other microzooplankton in the Irminger Sea (NW Atlantic Ocean) (2010) Mar. Ecol. Prog. Ser., 411, pp. 101-115
  • Neuer, S., Cowles, T.J., Protist herbivory in the Oregon upwelling system (1994) Mar. Ecol. Prog. Ser., 113, pp. 47-162
  • Paterson, H.L., Knott, B., Koslow, A.J., The grazing impact of microzooplankton off south west Western Australia: As measured by the dilution technique (2008) J. Plankton Res., 30, pp. 379-392
  • Piola, A., Rivas, A., Corrientes en la plataforma continental (1997) El Mar Argentino y Sus Recursos Pesqueros. Antecedentes Históricos de Las Exploraciones en El Mar y Las Características Ambientales, 1, pp. 119-132. , Boschi, E. (ed.), Publicaciones Especiales INIDEP, Mar del Plata, Argentina
  • Porter, K., Feig, Y., The use of DAPI for identifying and counting aquatic microflora (1980) Limnol. Oceanog., 25, pp. 943-948
  • Putland, J.N., Microzooplankton herbivory and bacterivory in Newfoundland coastal waters during spring, summer and winter (2000) Journal of Plankton Research, 22 (2), pp. 253-277
  • Putt, M., Stoecker, D., An experimentally determined carbon: Volume ratio for marine "oligotrichous" ciliates from estuarine and coastal waters (1989) Limnol. Oceanogr., 34, pp. 1097-1103
  • Rivas, A., Dogliotti, A., Gagliardini, D., Seasonal variability in the satellite-measured surface chlorophyll in the Patagonian Shelf (2006) Cont. Shelf Res., 26, pp. 703-720
  • Rodrigues, R.M.N.V., Williams, P.J.L.B., Inorganic nitrogen assimilation by picoplankton and whole plankton in a coastal ecosystem (2002) Limnology and Oceanography, 47 (6), pp. 1608-1616
  • Romero, S.I., Piola, A.R., Charo, M., Eiras Garcia, C.A., Chlorophyll-a variability off Patagonia based on SeaWiFS data (2006) Journal of Geophysical Research C: Oceans, 111 (5), pp. C05021. , DOI 10.1029/2005JC003244
  • Sabatini, M.E., Alvarez Colombo, G.L., Seasonal pattern of zooplankton biomass in the Argentinian shelf off southern patagonia (45°-55°S) (2001) Scientia Marina, 65 (1), pp. 21-31
  • Safi, K.A., Brian Griffiths, F., Hall, J.A., Microzooplankton composition, biomass and grazing rates along the WOCE SR3 line between Tasmania and Antarctica (2007) Deep-Sea Research Part I: Oceanographic Research Papers, 54 (7), pp. 1025-1041. , DOI 10.1016/j.dsr.2007.05.003, PII S0967063707001136
  • Sánchez, R.P., Bezzi, S.I., (2004) El Mar Argentino y Sus Recursos Pesqueros, 4. , Los peces marinos de interés pesquero. Caracterización biolo ́gica y evaluación del estado de explotación. Publicaciones Especiales INIDEP, Mar del Plata
  • Sanders, R.W., Seasonal distributions of the photosynthesizing ciliates Laboea strobila and Myrionecta rubra (=Mesodinium rubrum) in an estuary of the Gulf of Maine (1995) Aquatic Microbial Ecology, 9 (3), pp. 237-242
  • Santoferrara, L., Alder, V., Abundance trends and ecology of planktonic ciliates of the south-western Atlantic (35-638 S): A comparison between neritic and oceanic environments (2009) J. Plankton Res., 31, pp. 837-851
  • Sherr, E.B., Sherr, B.F., Bacterivory and herbivory: Key roles of phagotrophic protists in pelagic food webs (1994) Microb. Ecol., 28, pp. 223-235
  • Sherr, E.B., Sherr, B.F., Significance of predation by protists in aquatic microbial food webs (2002) Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 81 (1-4), pp. 293-308. , DOI 10.1023/A:1020591307260
  • Sherr, E.B., Sherr, B.F., Heterotrophic dinoflagellates: A significant component of microzooplankton biomass and major grazers of diatoms in the sea (2007) Marine Ecology Progress Series, 352, pp. 187-197. , DOI 10.3354/meps07161
  • Sherr, E.B., Sherr, B.F., Verity, P.G., Distribution and relation of total bacteria, active bacteria, bacterivory, and volume of organic detritus in Atlantic continental shelf waters off Cape Hatteras NC, USA (2002) Deep-Sea Research Part II: Topical Studies in Oceanography, 49 (20), pp. 4571-4585. , DOI 10.1016/S0967-0645(02)00129-7, PII S0967064502001297
  • Stelfox-Widdicombe, C.E., Edwards, E.S., Burkill, P.H., Sleigh, M.A., Microzooplankton grazing activity in the temperate and sub-tropical NE Atlantic: Summer 1996 (2000) Marine Ecology Progress Series, 208, pp. 1-12
  • Stoecker, D.K., Taniguchi, A., Michaels, A.E., Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters (1989) Mar. Ecol. Prog. Ser., 50, pp. 241-254
  • Strom, S.L., Novel interactions between phytoplankton and microzooplankton: Their influence on the coupling between growth and grazing rates in the sea (2002) Hydrobiologia, 480, pp. 41-54
  • Strom, S.L., Brainard, M.A., Holmes, J.L., Olson, M.B., Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters (2001) Marine Biology, 138 (2), pp. 355-368. , DOI 10.1007/s002270000461
  • Strom, S.L., Macri, E.L., Olson, M.B., Microzooplankton grazing in the coastal Gulf of Alaska: Variations in top-down control of phytoplankton (2007) Limnology and Oceanography, 52 (4), pp. 1480-1494
  • Sutor, M.M., (2004) Vertical Distribution Patterns of Plankton and Their Relationship to Physical Factors over the Continental Shelf off Oregon, , PhD Thesis, Oregon State University, USA
  • Utermöhl, H., Zur vervolkommung der quantitativen phytoplankton-methodik (1958) Mitteilung Internationale Vereinigung fuer Theoretische Unde Amgewandte Limnologie, 9, pp. 1-38
  • Uye, S.-I., Nagano, N., Tamaki, H., Geographical and seasonal variations in abundance, biomass and estimated production rates of microzooplankton in the Inland Sea of Japan (1996) J. Oceanogr., 52, pp. 689-703
  • Verity, P.G., Langdon, C., Relationship between lorica volume, carbon, nitorgen, and ATP content of tintinnids in Narragansett Bay (1984) J. Plankton Res., 6, pp. 859-868
  • Verity, P.G., Paffenhofer, G.-A., Wallace, D., Composition and biomass of plankton in spring on the Cape Hatteras shelf, with implications for carbon flux (1996) Cont. Shelf Res., 16, pp. 1087-1116
  • Verity, P.G., Redalje, D.G., Lohrenz, S.R., Flagg, C., Hristov, R., Coupling between primary production and pelagic consumption in temperate ocean margin pelagic ecosystems (2002) Deep-Sea Research Part II: Topical Studies in Oceanography, 49 (20), pp. 4553-4569. , DOI 10.1016/S0967-0645(02)00164-9, PII S0967064502001649

Citas:

---------- APA ----------
Santoferrara, L.F., Gómez, M.I. & Alder, V.A. (2011) . Bathymetric, latitudinal and vertical distribution of protozooplankton in a cold-temperate shelf (southern Patagonian waters) during winter. Journal of Plankton Research, 33(3), 457-468.
http://dx.doi.org/10.1093/plankt/fbq128
---------- CHICAGO ----------
Santoferrara, L.F., Gómez, M.I., Alder, V.A. "Bathymetric, latitudinal and vertical distribution of protozooplankton in a cold-temperate shelf (southern Patagonian waters) during winter" . Journal of Plankton Research 33, no. 3 (2011) : 457-468.
http://dx.doi.org/10.1093/plankt/fbq128
---------- MLA ----------
Santoferrara, L.F., Gómez, M.I., Alder, V.A. "Bathymetric, latitudinal and vertical distribution of protozooplankton in a cold-temperate shelf (southern Patagonian waters) during winter" . Journal of Plankton Research, vol. 33, no. 3, 2011, pp. 457-468.
http://dx.doi.org/10.1093/plankt/fbq128
---------- VANCOUVER ----------
Santoferrara, L.F., Gómez, M.I., Alder, V.A. Bathymetric, latitudinal and vertical distribution of protozooplankton in a cold-temperate shelf (southern Patagonian waters) during winter. J. Plankton Res. 2011;33(3):457-468.
http://dx.doi.org/10.1093/plankt/fbq128