Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Intertidal blue mussels, Mytilus edulis, experience hypoxia reoxygenation during tidal emersion and resubmersion cycles, and this is often suggested to represent a major stress for the animals, especially for their respiratory tissues, the gills. We exposed mussels to experimental short and prolonged anoxia and subsequent reoxygenation and analyzed the respiratory response in excised gill tissue and the effects of treatment on reactive oxygen species (mainly ROS: superoxide anion, O2·- and hydrogen peroxide, H2O2), formation using live imaging techniques and confocal microscopy. Our aim was to understand if this "natural stress" would indeed produce oxidative damage and whether antioxidant defenses are induced under anoxia, to prevent oxidative damage during reoxygenation. Exposure to declining pO2 in the respiration chamber caused an increase of gill metabolic rate between 21 and 10kPa, a pO2 range in which whole animal respiration is reported to be oxyregulating. Exposure of the animals to severe anoxia caused an onset of anaerobiosis (succinate accumulation) and shifted high and low critical pc values (pc1: onset of oxyregulation in gills, pc2: switch from oxyregulation to oxyconformity) to higher pO2. Concentrations of both ROS decreased strongly during anoxic exposure of the mussels and increased upon reoxygenation. This ROS burst induced lipid peroxidation in the mantle, but neither were protein carbonyl levels increased (oxidative damage in the protein fraction), nor did the tissue glutathione concentration change in the gills. Further, analysis of apoptosis markers indicated no induction of cell death in the gills. To our knowledge, this is the first paper that directly measures ROS formation during anoxia reoxygenation in mussels. We conclude that hypoxia tolerant intertidal mussels do not suffer major oxidative stress in gill and mantle tissues under these experimental conditions. © 2013 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Oxygen radical formation in anoxic transgression and anoxia-reoxygenation: Foe or phantom? Experiments with a hypoxia tolerant bivalve
Autor:Rivera-Ingraham, G.A.; Rocchetta, I.; Meyer, S.; Abele, D.
Filiación:Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIBICEN-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pab. II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Blue mussel; Live imaging; Oxidative stress; Reoxygenation; Animals; Cell death; Histology; Imaging techniques; Metabolism; Molluscs; Oxidative stress; Oxygen; Proteins; Tissue; Antioxidant defense; Blue mussels; Experimental conditions; Glutathione concentration; Live imaging; Reactive oxygen species; Reoxygenation; Respiratory response; Tissue engineering; caspase; catalase; glutathione; hydrogen peroxide; oxygen radical; reactive oxygen metabolite; succinic acid; superoxide; superoxide dismutase; apoptosis; bivalve; hypoxia; imaging method; oxygen; oxygenation; respiration; anaerobic growth; animal experiment; animal tissue; anoxia; article; confocal microscopy; controlled study; gill; hypoxia; intertidal species; lipid peroxidation; metabolic rate; Mytilus edulis; nonhuman; oxidation reduction state; oxidative stress; oxygen tension; protein carbonylation; reoxygenation; Animalia; Bivalvia; Mytilus edulis; Blue mussel; Live imaging; Oxidative stress; Reoxygenation; Animals; Anoxia; Antioxidants; Caspases; Gills; Glutathione; Hydrogen Peroxide; Lipid Peroxidation; Mytilus edulis; Oxidative Stress; Oxygen; Reactive Oxygen Species; Succinates; Superoxides
Año:2013
Volumen:92
Página de inicio:110
Página de fin:119
DOI: http://dx.doi.org/10.1016/j.marenvres.2013.09.007
Título revista:Marine Environmental Research
Título revista abreviado:Mar. Environ. Res.
ISSN:01411136
CODEN:MERSD
CAS:caspase, 186322-81-6; catalase, 9001-05-2; glutathione, 70-18-8; hydrogen peroxide, 7722-84-1; succinic acid, 110-15-6; superoxide, 11062-77-4; superoxide dismutase, 37294-21-6, 9016-01-7, 9054-89-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01411136_v92_n_p110_RiveraIngraham

Referencias:

  • Abele-Oeschger, D., Oeschger, R., Hypoxia induced autoxidation of haemoglobin in the benthic invertebrates Arenicola marina (Polychaeta) and Astarte borealis (Bivalvia): possible effect of hydrogen sulphide (1995) J.Exp. Mar. Biol. Ecol., 187, pp. 63-80
  • Abele, D., Brey, T., Philipp, E.E.R., Bivalve models of aging and the determination of molluscan lifespans (2009) Exp. Gerontol., 44, pp. 307-315
  • Abele, D., Heise, K., Pörtner, H.O., Puntarulo, S., Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria (2002) J.Exp. Biol., 205, pp. 1831-1841
  • Abele, D., Philipp, E., Gonzalez, P., Puntarulo, S., Marine invertebrate mitochondria and oxidative stress (2007) Front. Biochem., 12, pp. 933-946
  • Aebi, H., Catalase invitro (1984) Methods Enzymol., 105, pp. 121-126
  • Aiello, E., Guideri, G., Distribution and function of the branchial nerve in the mussel (1965) Biol. Bull., 129, pp. 431-438
  • Almeida, E., Bainy, A.C.D., Effects of aerial exposure on antioxidant defenses in the brown mussel Perna perna (2006) Braz. Arch. Biol. Technol., 49, pp. 225-229
  • Almeida, E., Silva, D.G.H., Dias Bainy, A.C., Porto Freitas, F., Motta, F.D., Gomez, O.F., Gennari de Medeiros, M.H., Di Mascio, P., Evaluation of glutathione status in aquatic organisms (2012) Oxidative Stress in Aquatic Environments, pp. 381-388. , Wiley-Blackwell, Oxford, D. Abele, J.P. Vázquez-Media, T. Zenteno-Savín (Eds.)
  • Bayne, B.L., Ventilation, the heart beat and oxygen uptake by Mytilus edulis L. in declining oxygen tension (1971) Comp. Biochem. Physiol. Part A Physiol., 40, pp. 1065-1085
  • Bayne, B.L., Thompson, R.J., Widdows, J., Physiology 1 (1976) Marine Mussels. Their Ecology and Physiology, pp. 121-206. , Cambridge University Press, Cambridge, B.L. Bayne (Ed.)
  • Bonini, M.G., Rota, C., Tomasi, A., Mason, R.P., The oxidation of 2',7'-dichlorofluorescin to reactive oxygen species: a self-fulfilling prophesy? (2006) Free Radic. Biol. Med., 40, pp. 968-975
  • Bradford, M.M., Arapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
  • Carballal, M., López, C., Azevedo, C., Villalba, A., Enzymes involved in defense functions of hemocytes of Mussel Mytilus galloprovincialis (1997) J.Invertebr. Pathol., 70, pp. 96-105
  • Dikkeboom, R., Tijnagel, J.M.G.H., Mulder, E.C., van der Knaap, W.P.W., Hemocytes of the pond snail Lymnaea stagnalis generate reactive forms of oxygen (1987) J.Invertebr. Pathol., 49, pp. 321-331
  • Duggleby, R.G., Regression analysis of nonlinear Arrhenius plots: an empirical model and a computer program (1984) Comput. Biol. Med., 14, pp. 447-455
  • Gosling, E., (2003) Bivalve Molluscs. BIology, Ecology and Culture, , Blackwell, Oxford
  • Herreid, C.F.I., Hypoxia in invertebrates (1980) Comp. Biochem. Physiol. Part A Physiol., 67, pp. 311-320
  • Holwerda, D.A., De Zwaan, A., On the role of fumarate reductase in anaerobic carbohydrate catabolism of Mytilus edulis L (1980) Comp. Biochem. Physiol. Part B Comp. Biochem., 67, pp. 447-453
  • Husmann, G., Philipp, E.E.R., Rosenstiel, P., Vázquez, S., Abele, D., Immune response of the Antarctic bivalve Laternula elliptica to physical stress and microbial exposure (2011) J.Exp. Biol. Ecol., 398, pp. 83-90
  • Irato, P., Piccinni, E., Cassini, A., Santovito, G., Antioxidant responses to variations in dissolved oxygen of Scapharca inaequivalvis and Tapes philippinarum, two bivalve species from the lagoon of Venice (2007) Mar. Pollut. Bull., 54, pp. 1020-1030
  • Letendre, J., Chouquet, B., Manduzio, H., Marin, M., Bultelle, F., Leboulenger, F., Durand, F., Tidal height influences the levels of enzymatic antioxidant defences in Mytilus edulis (2009) Mar. Environ. Res., 67, pp. 69-74
  • Li, C., Jackson, R.M., Reactive species mechanisms of cellular hypoxia-reoxygenation injury (2002) Am. J. Physiol. Cell Physiol., 282, pp. C227-C241
  • Li, J., Bombeck, C.A., Yang, S., Kim, Y.-M., Billiar, T.R., Nitric oxide supresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes (1999) J.Biol. Chem., 274, pp. 17325-17333
  • Livingstone, D.R., Lips, F., Garcia Martinez, P., Pipe, R.K., Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis (1992) Mar. Biol., 112, pp. 265-276
  • Mannick, J.B., Miao, X.Q., Stamler, J.S., Nitric oxide inhibits Fas-induced apoptosis (1997) J.Biol. Chem., 272, pp. 24125-24128
  • Massabuau, J., Abele, D., Principles of oxygen uptake and tissue oxygenation in water-breathing animals (2012) Oxidative Stress in Aquatic Ecosystems, pp. 141-156. , Wiley-Blackwell, Chichester, West Sussex, D. Abele, J.P. Vázques-Medina, T. Zenteno- Savín (Eds.)
  • Pamatmat, M.M., Facultative anaerobiosis of benthos (1980) Marine Benthic Dynamics, pp. 65-90. , University of South Carolina Press, Columbia, K.R. Tenore, B.C. Coull (Eds.)
  • Pamplona, R., Costantini, D., Molecular and structural antioxidant defenses against oxidative stress in animals (2011) Am. J. Physiol., 301, pp. 843-863
  • Pannunzio, T.M., Storey, K.B., Antioxidant defenses and lipid peroxidation during anoxia stress and aerobic recovery in the marine gastropod Littorina littorea (1998) J.Exp. Mar. Biol. Ecol., 221, pp. 277-292
  • Radi, R., Cassina, A., Hodara, R., Quijano, C., Castro, L., Peroxynitrite reactions and formation in mitochondria (2002) Free Radic. Biol. Med., 33, pp. 1451-1464
  • Rivera-Ingraham, G.A., Bickmeyer, U., Abele, D., The physiological response of the marine platyhelminth Macrostomum lignano to different environmental oxygen concentrations (2013) J.Exp. Biol., 216, pp. 2741-2751
  • Sheldon, F., Walker, K.F., Effects of hypoxia on oxygen consumption by two species of freshwater mussel (Unionacea: Hyriidae) from the Rivera Murray (1989) Aust. J. Mar. Freshw. Res., 40, pp. 491-499
  • Sprung, M., Reproduction and fecundity of the mussel Mytilus edulis at Helgoland (North Sea) (1983) Helgol. Meeresunters., 36, pp. 243-255
  • Strahl, J., Abele, D., Cell turnover in tissues of the long-lived ocean quahog Arctica islandica and the short-lived scallop Aequipecten opercularis (2010) Mar. Biol. (Berl.), 157, pp. 1283-1292
  • Strahl, J., Brey, T., Philipp, E.E.R., Thorarinsdottir, G., Fischer, N., Wessels, W., Abele, D., Physiological responses to self-induced burrowing and metabolic rate depression in the ocean quahog Arctica islandica (2011) J.Exp. Biol., 214, pp. 4221-4231
  • Tarpey, M.M., Wink, D.A., Grisham, M.B., Methods for detection of reactive metabolites of oxygen and nitrogen: invitro and invivo considerations (2004) Am. J. Physiol., 286, pp. 431-444
  • Uchiyama, M., Mihara, M., Determination of malondialdehyde precursor in tissues by thiobarbituric acid test (1978) Anal. Biochem., 86, pp. 271-278
  • Van Winkle, W.J., The effects of season, temperature and salinity on the oxygen consumption of bivalve gill tissue (1968) Comp. Biochem. Physiol., 26, pp. 69-80
  • Viarengo, A., Pertica, M., Canesi, L., Accomando, R., Mancinelli, G., Orunesu, M., Lipid peroxidation and level of antioxidant compounds (GSH, vitamin E) in the digestive glands of mussels of three different age groups exposed to anaerobic and aerobic conditions (1989) Mar. Environ. Res., 28, pp. 291-295
  • Wang, W.X., Widdows, J., Metabolic response of the common mussel Mytilus edulis to hypoxia and anoxia (1993) Mar. Ecol. Prog. Ser., 95, pp. 205-214
  • Wang, X.L., Widdows, J., Page, D.S., Effects of organic toxicants on the anoxia energy metabolism of the mussel Mytilus edulis (1992) Mar. Environ. Res., 34, pp. 327-331
  • Welker, A.F., Moreira, D.C., Campos, E.G., Hermes-Lima, M., Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability (2013) Comp. Biochemistry and Physiol. Part A Physiol.
  • Zandee, D.I., Holwerda, D.A., Kluytmans, J.H., De Zwaan, A., Metabolic adaptations to the environmental anoxia in the intertidal bivalve mollusc Mytilus edulis L. (1986) Neth. J. Zool., 36, pp. 322-343
  • Zurburg, W., Kluytmans, J.H., Organ specific changes in energy metabolism due to anaerobiosis in the sea mussel Mytilus edulis (L.) (1980) Comp. Biochem. Physiol. Part B Comp. Biochem., 67, pp. 317-322

Citas:

---------- APA ----------
Rivera-Ingraham, G.A., Rocchetta, I., Meyer, S. & Abele, D. (2013) . Oxygen radical formation in anoxic transgression and anoxia-reoxygenation: Foe or phantom? Experiments with a hypoxia tolerant bivalve. Marine Environmental Research, 92, 110-119.
http://dx.doi.org/10.1016/j.marenvres.2013.09.007
---------- CHICAGO ----------
Rivera-Ingraham, G.A., Rocchetta, I., Meyer, S., Abele, D. "Oxygen radical formation in anoxic transgression and anoxia-reoxygenation: Foe or phantom? Experiments with a hypoxia tolerant bivalve" . Marine Environmental Research 92 (2013) : 110-119.
http://dx.doi.org/10.1016/j.marenvres.2013.09.007
---------- MLA ----------
Rivera-Ingraham, G.A., Rocchetta, I., Meyer, S., Abele, D. "Oxygen radical formation in anoxic transgression and anoxia-reoxygenation: Foe or phantom? Experiments with a hypoxia tolerant bivalve" . Marine Environmental Research, vol. 92, 2013, pp. 110-119.
http://dx.doi.org/10.1016/j.marenvres.2013.09.007
---------- VANCOUVER ----------
Rivera-Ingraham, G.A., Rocchetta, I., Meyer, S., Abele, D. Oxygen radical formation in anoxic transgression and anoxia-reoxygenation: Foe or phantom? Experiments with a hypoxia tolerant bivalve. Mar. Environ. Res. 2013;92:110-119.
http://dx.doi.org/10.1016/j.marenvres.2013.09.007