Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The triphenylmethane dye malachite green (MG), commonly used as fungicide, was adsorbed onto wheat bran (WB) by using a batch technique. The effects of contact time, dye concentration and pH were investigated. The equilibrium was attained after 40 min of contact time irrespective of MG concentration. The pH of MG aqueous solution greatly influenced the adsorption capacity and intensity, it was found that maximum adsorption of dye occurred at pH range 7-9, where the amount of dye removed was nearly 90%. Data obtained on adsorption at different dye concentrations and pH range 4-7 were used to plot the Freundlich isotherms. WB with MG adsorbed at pH range 4-7 was used as substrate for the growth of the white rot fungi Fomes sclerodermeus and Phanerochaete chrysosporium. The presence of MG (nearly 24 mg g-1 dry WB) delayed the fungal growth. MG was completely degraded by F. sclerodermeus cultures at pH 5, in concordance with the highest ligninases production. Thus, pH values not only influenced the adsorption capacity of WB but they were also important for growth, enzyme production and finally, dye degradation. This technique should have broad applications in bioremediation processes of water and wastewater. © 2006 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran-Fomes sclerodermeus
Autor:Papinutti, L.; Mouso, N.; Forchiassin, F.
Filiación:Laboratorio de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Ciudad Autonoma de Buenos Aires, Argentina
Palabras clave:Adsorption; Bioremediation; Dyes; Ligninases; White rot fungi; Adsorption; Bioremediation; Crops; Dyes; Fungi; Methane; pH effects; Solutions; Adsorption capacity; Batch techniques; Ligninases; Malachite green (MG); Fungicides; fungicide; lignin peroxidase; malachite green; triphenylmethane derivative; acidity; adsorption; alkalinity; aqueous solution; article; batch process; biodegradation; bioremediation; controlled study; enzyme synthesis; Fomes sclerodermeus; fungus culture; fungus growth; isotherm; nonhuman; Phanerochaete; wheat bran; Adsorption; Dyes; Farm Crops; Fungi; Fungicides; Ph; Solutions; White Rot Fungi; Fomes; Fungi; Phanerochaete chrysosporium; Triticum aestivum
Año:2006
Volumen:39
Número:4
Página de inicio:848
Página de fin:853
DOI: http://dx.doi.org/10.1016/j.enzmictec.2006.01.013
Título revista:Enzyme and Microbial Technology
Título revista abreviado:Enzyme Microb. Technol.
ISSN:01410229
CODEN:EMTED
CAS:lignin peroxidase, 42613-30-9; malachite green, 569-64-2; triphenylmethane derivative, 16371-43-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01410229_v39_n4_p848_Papinutti

Referencias:

  • Forgacs, E., Cserháti, T., Oros, G., Removal of synthetic dyes from wastewaters: a review (2004) Environ Int, 30, pp. 953-971
  • Fessard, V., Godard, T., Huet, S., Mourot, A., Poul, J.M., Mutagenicity of malachite green and leucomalachite green in in vitro tests (1999) J Appl Toxicol, 19, pp. 421-430
  • Papinutti, V.L., Forchiassin, F., Modification of malachite green by Fomes sclerodermeus and reduction of toxicity to Phanerochaete chrysosporium (2004) FEMS Microbiol Lett, 231, pp. 205-209
  • El-Shafey, E., Cox, M., Pichugin, A.A., Appleton, Q., Application of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqueous solution (2002) J Chem Technol Biotechnol, 77, pp. 429-436
  • Singh, K.P., Mohan, D., Sinha, S., Tondon, G.S., Gosh, D., Color removal from wastewater using low-cost activated carbon derived from agricultural waste material (2003) Ind Eng Chem Res, 42, pp. 1965-1976
  • Ofer, R., Yerachmiel, A., Shmuel, Y., Marine macroalgae as biosorbents for cadmium and nickel in water (2003) Water Environ Res, 75, pp. 246-253
  • Adachi, A., Takagi, S., Okano, T., Adsorption and adsorption mechanism of rice bran for chloroform from tap water (2002) Chemosphere, 46, pp. 87-92
  • Adachi, A., Yatani, Y., Okano, T., Efficiency of wheat bran removal of organochlorine compounds and benzene from solution (2003) Bull Environ Contam Toxicol, 71, pp. 375-378
  • Bhattacharyya, K.G., Sharma, A., Kinetics and thermodynamics of Methylene Blue adsorption on neem (Azadirachta indica) leaf powder (2005) Dyes Pigments, 65, pp. 51-59
  • Lee, C.K., Low, K.S., Chew, S.L., Removal of anionic dyes by water hyacinth (1999) Adv Environ Res, 3, pp. 343-351
  • Hatakka, A., Lignin modifying enzymes from selected white-rot fungi: production and role in lignin degradation (1994) FEMS Microbiol Rev, 13, pp. 125-135
  • Pointing, S.B., Feasibility of bioremediation by white-rot fungi (2001) Appl Microbiol Biotechnol, 57, pp. 20-33
  • Papinutti, V.L., Diorio, L.A., Forchiassin, F., Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran (2003) J Ind Microbiol Biotechnol, 30, pp. 157-160
  • Cha, C.J., Doerge, D.R., Cerniglia, C.E., Biotransformation of malachite green by the fungus Cunninghamella elegans (2001) Appl Environ Microbiol, 67, pp. 4358-4360
  • Terebiznik, M.R., Pilosof, A.M.R., Biomass estimation in solid state fermentation by modelling dry matter weigh loss (1999) Biotechnol Tech, 13, pp. 215-219
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254
  • Paszczynski, A., Crawford, R.L., Degradation of azo compounds by ligninases from Phanerochaete chrysosporium involvement of veratryl alcohol (1991) Biochem Biophys Res Commun, 178, pp. 1056-1063
  • Paszczynski, A., Crawford, R.L., Huynh, V.-B., Manganese peroxidase of Phanerochaete chrysosporium: purification (1988) Methods Enzymol, 161, pp. 264-270
  • Tien, M., Kirk, T.K., Lignin peroxidase of Phanerochaete chrysosporium (1988) Methods Enzymol, 161, pp. 238-249
  • Malik, P.K., Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics (2004) J Hazard Mater, 113, pp. 81-88
  • Mohan, D., Singh, K.P., Singh, G., Kumar, K., Removal of dyes from wastewater using fly ash, a low-cost adsorbent (2002) Ind Eng Chem Res, 41, pp. 3688-3695
  • Wang, S., Boyjoo, Y., Choueib, A., Zhu, Z.H., Removal of dyes from aqueous solution using fly ash and red mud (2005) Water Res, 39, pp. 129-138

Citas:

---------- APA ----------
Papinutti, L., Mouso, N. & Forchiassin, F. (2006) . Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran-Fomes sclerodermeus. Enzyme and Microbial Technology, 39(4), 848-853.
http://dx.doi.org/10.1016/j.enzmictec.2006.01.013
---------- CHICAGO ----------
Papinutti, L., Mouso, N., Forchiassin, F. "Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran-Fomes sclerodermeus" . Enzyme and Microbial Technology 39, no. 4 (2006) : 848-853.
http://dx.doi.org/10.1016/j.enzmictec.2006.01.013
---------- MLA ----------
Papinutti, L., Mouso, N., Forchiassin, F. "Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran-Fomes sclerodermeus" . Enzyme and Microbial Technology, vol. 39, no. 4, 2006, pp. 848-853.
http://dx.doi.org/10.1016/j.enzmictec.2006.01.013
---------- VANCOUVER ----------
Papinutti, L., Mouso, N., Forchiassin, F. Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran-Fomes sclerodermeus. Enzyme Microb. Technol. 2006;39(4):848-853.
http://dx.doi.org/10.1016/j.enzmictec.2006.01.013