Let D: Ω → Ω be a differential operator defined in the exterior algebra Ω of differential forms over the polynomial ring S in n variables. In this work we give conditions for deforming the module structure of Ω over S induced by the differential operator D, in order to make D an S-linear morphism while leaving the C-vector space structure of Ω unchanged. One can then apply the usual algebraic tools to study differential operators: finding generators of the kernel and image, computing a Hilbert polynomial of these modules, etc. Taking differential operators arising from a distinguished family of derivations, we are able to classify which of them allow such deformations on Ω. Finally we give examples of differential operators and the deformations that they induce. © 2016, The Managing Editors.
| Documento: | Artículo |
| Título: | Deformations of the exterior algebra of differential forms |
| Autor: | Molinuevo, A. |
| Filiación: | Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Buenos Aires, CP C1428EGA, Argentina |
| Palabras clave: | Differential operators; Exterior algebra; Modules; Order one |
| Año: | 2016 |
| Volumen: | 57 |
| Número: | 4 |
| Página de inicio: | 771 |
| Página de fin: | 787 |
| DOI: | http://dx.doi.org/10.1007/s13366-016-0299-1 |
| Título revista: | Beitrage zur Algebra und Geometrie |
| Título revista abreviado: | Beitr. Algebr. Geom. |
| ISSN: | 01384821 |
| Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01384821_v57_n4_p771_Molinuevo |