Artículo

Tropeano, M.; Vázquez, S.; Coria, S.; Turjanski, A.; Cicero, D.; Bercovich, A.; Mac Cormack, W. "Extracellular hydrolytic enzyme production by proteolytic bacteria from the Antarctic" (2013) Polish Polar Research. 34(3):253-267
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cold-adapted marine bacteria producing extracellular hydrolytic enzymes are important for their industrial application and play a key role in degradation of particulate organic matter in their natural environment. In this work, members of a previously-obtained protease-producing bacterial collection isolated from different marine sources from Potter Cove (King George Island, South Shetlands) were taxonomically identified and screened for their ability to produce other economically relevant enzymes. Eighty-eight proteolytic bacterial isolates were grouped into 25 phylotypes based on their Amplified Ribosomal DNA Restriction Analysis profiles. The sequencing of the 16S rRNA genes from representative isolates of the phylotypes showed that the predominant culturable protease-producing bacteria belonged to the class Gammaproteobacteria and were affiliated to the genera Pseudomonas, Shewanella, Colwellia, and Pseudoalteromonas, the latter being the predominant group (64% of isolates). In addition, members of the classes Actinobacteria, Bacilli and Flavobacteria were found. Among the 88 isolates screened we detected producers of amylases (21), pectinases (67), cellulases (53), CM-cellulases (68), xylanases (55) and agarases (57). More than 85% of the isolates showed at least one of the extracellular enzymatic activities tested, with some of them producing up to six extracellular enzymes. Our results confirmed that using selective conditions to isolate producers of one extracellular enzyme activity increases the probability of recovering bacteria that will also produce additional extracellular enzymes. This finding establishes a starting point for future programs oriented to the prospecting for biomolecules in Antarctica.

Registro:

Documento: Artículo
Título:Extracellular hydrolytic enzyme production by proteolytic bacteria from the Antarctic
Autor:Tropeano, M.; Vázquez, S.; Coria, S.; Turjanski, A.; Cicero, D.; Bercovich, A.; Mac Cormack, W.
Filiación:Biosidus S.A., Constitución 4234, (1232) Buenos Aires, Argentina
Cátedra de Microbiología Industrial y Biotecnología, Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, (1033) Buenos Aires, Argentina
Instituto Antártico Argentino, Cerrito 1248, (1026) Buenos Aires, Argentina
Departamento de Química Inorgánica,Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, (1428) Buenos Aires, Argentina
Departamento de Química Biológica, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, (1428) Buenos Aires, Argentina
Fundación Instituto Leloir, Patricias Argentinas 435, (1405) Buenos Aires, Argentina
Department of Chemical Science and Technology, University of Rome 'Tor Vergata', Via del Politecnico 1, (00133) Rome, Italy
Palabras clave:Antarctic; Cold enzymes; Marine bacteria; Psychrophiles; bacterium; degradation; enzyme activity; extremophile; gene; hydrolysis; identification method; particulate organic matter; RNA; taxonomy; Antarctica; King George Island; Potter Cove; South Shetland Islands
Año:2013
Volumen:34
Número:3
Página de inicio:253
Página de fin:267
DOI: http://dx.doi.org/10.2478/popore-2013-0014
Título revista:Polish Polar Research
Título revista abreviado:Pol. Polar Res.
ISSN:01380338
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01380338_v34_n3_p253_Tropeano

Referencias:

  • (2002) Naming and numbering system for Antarctic Specially Protected Areas, , ATCM, XXV Antarc-tic Treaty Consultative Meeting, Warszawa, Poland. Decision 1
  • Bakermans, C., Psychrophiles: Life in the cold (2012) Extremophiles: Microbiol-ogy and Biotechnology, pp. 53-76. , In: R. Anitori (ed.), Horizon Scientific Press, Hethersett
  • Bernardet, J.F., Nakagawa, Y., An introduction to the family Flavobacteriaceae (2006) The Proka-ryotes: A Handbook on the Biology of Bacteria, 7, pp. 455-480. , In: M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer and E. Stackebrandt (eds), Springer, New York
  • Brizzio, S., Turchetti, B., Libkind, D., Buzzini, P., Broock, M., Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina) (2007) Canadian Journal of Microbiology, 53, pp. 519-525
  • Brunnegård, J., Grandel, S., Ståhl, H., Tengberg, A., Hall, J., Nitrogen cycling in deep-sea sediments of the Porcupine Abyssal Plain, NE Atlantic (2004) Progress in Oceanography, 63, pp. 159-181
  • Cavicchioli, R., Charlton, T., Ertan, H., Mohd Omar, S., Siddiqui, K.S., Williams, T.J., Biotechnological uses of enzymes from psychrophiles (2011) Microbial Biotechnology, 4, pp. 449-460
  • Chen, S., Kaufman, M.G., Miazgowicz, K.L., Bagdasarian, M., Andwalker, E.D., Molec-ular characterization of a cold-active recombinant xylanase from Flavobacterium johnsoniae and its applicability in xylan hydrolysis (2013) Bioresource Technology, 128, pp. 145-155
  • Clarke, A., Barnes, D.K.Z., Hodgson, D.A., How isolated is Antarctica? (2005) Trends in Ecol-ogy and Evolution, 20, pp. 1-3
  • Collins, T., Dámico, S., Marx, J.C., Feller, G., Gerday, C., Cold-adapted enzymes (2007) Physiology and Biochemistry of Extremophiles, pp. 165-179. , In: C. Gerday and N. Glansdorff (eds), ASM Press, Washington DC
  • Cowan, D.A., Tow, L.A., Endangered Antarctic Environments (2004) Annual Review of Microbi-ology, 58, pp. 649-690
  • Dang, H., Zhu, H., Wang, J., Li, T., Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough (2009) World Jour-nal of Microbiology and Biotechnology, 25, pp. 71-79
  • Dias, A., Dini-Andreote, F., Lacava, P.T., Sá, A.L., Melo, I.S., Azevedo, J.L., Arajuo, W.L., Diversity and biotechnological potential of culturable bacteria from Brazilian mangrove sediment (2009) World Journal of Microbiology and Biotechnology, 25, pp. 1305-1311
  • Euzéby, J.P., List of Bacterial Names with Standing in Nomenclature: A folder available on the Internet (1997) International Journal of Systematic Bacteriology, 47, pp. 590-592
  • Gomes, J., Steiner, W., The biocatalytic potential of extremophiles and extremozymes (2004) Food Technology and Biotechnology, 42, pp. 223-235
  • Grossart, H.P., Levold, F., Allgaier, M., Simon, M., Brinkhoff, T., Marine diatom spe-cies harbour distinct bacterial communities (2005) Environmental Microbiology, 7, pp. 860-873
  • Holmström, C., Kjelleberg, S., Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents (1999) FEMS Microbiology Ecology, 30, pp. 285-293
  • Hunter, E., Mills, H., Kostka, J., Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments (2006) Applied and Environmental Microbiology, 72, pp. 5689-5701
  • Huston, A.L., Deming, J.W., Relationships between microbial extracellular enzymatic ac-tivity and suspended and sinking particulate organic matter: Seasonal transformations in the North Water (2002) Deep-Sea Research II, 49, pp. 5211-5225
  • Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Chun, J., Introducing EzTaxon-e: A prokaryotic 16S rRNA Gene sequence da-tabase with phylotypes that represent uncultured species (2012) International Journal of Systematic and Evolutionary Microbiology, 62, pp. 716-721
  • Kirchman, D.L., The ecology of Cytophaga-Flavobacteria in aquatic environments (2002) FEMS Microbiology Ecology, 39, pp. 91-100
  • Kirchman, D.L., Dittel, A.I., Findlay, S.E.G., Fischer, D., Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York (2004) Aquatic Microbial Ecology, 35, pp. 243-257
  • Konieczna, I., Wojtasik, B., Kwinkowski, M., Burska, D., Nowiński, K., Zarnowiec, P., Kaca, W., Analysis of cultivable aerobic bacteria isolated from bottom sediments in the Wijdefjorden region, Spitsbergen (2011) Polish Polar Research, 32, pp. 181-195
  • Kuddus, M., Ramteke, P.W., Recent developments in production and biotechnological ap-plications of cold-active microbial proteases (2012) Critical Reviews in Microbiology, 38, pp. 330-338
  • Kumar, L., Awashi, G., Singh, B., Extremophiles: A novel source of industrially important enzymes (2011) Biotechnology, 10, pp. 121-135
  • Li, N., Meng, K., Wang, Y., Shi, P., Luo, H., Bai, Y., Yang, P., Yao, B., Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9 (2008) Applied Microbiology and Biotechnology, 80, pp. 231-240
  • Loperena, L., Soria, V., Varela, H., Lupo, S., Bergalli, A., Guigou, M., Pellegrino, A., Batista, S., Extracellular enzymes produced by microorganisms isolated from maritime Antarctica (2012) World Journal of Microbiology and Bio-technology, 28, pp. 2249-2256
  • Margesin, R., Schinner, F., A comparison of extracellular proteases from three psychro-trophic strains of Pseudomonas fluorescens (1992) Journal of General and Applied Microbiology, 38, pp. 209-225
  • Margesin, R., Neuner, G., Storey, K.B., Cold-loving microbes, plants, and animals: Fun-damental and applied aspects (2007) Naturwissenschaften, 94, pp. 77-99
  • Olivera, N.L., Sequeiros, C., Nievas, M.L., Diversity and enzyme properties of prote-ase-producing bacteria isolated from sub-Antarctic sediments of Isla de los Estados, Argentina (2007) Extremophiles, 11, pp. 517-526
  • Schloss, I.R., Abele, D., Moreau, S., Demers, S., Bers, A.V., González, O., Ferreyra, G.A., Response of phytoplankton dynamics to 19-year (1991-2009) climate trends in Potter Cove (Antarctica) (2012) Journal of Marine systems, 92, pp. 53-66
  • Secades, P., Alvarez, B., Guijarro, J.A., Purification and properties of a new psychrophilic metalloprotease (Fpp2) in the fish pathogen Flavobacterium psychrophilum (2003) FEMS Microbiology Letters, 226, pp. 273-279
  • Srinivas, T.N., Nageswara Rao, S.S., Vishnu Vardhan Reddy, P., Pratibha, M.S., Sailaja, B., Kavya, B., Hara Kishore, K., Shivaji, S., Bacterial di-versity and bioprospecting for cold-active lipases, amylases and proteases, from culturable bac-teria of Kongsfjorden and Ny-Ålesund, Svalbard, Arctic (2009) Current Microbiology, 59, pp. 537-547
  • Stackebrandt, E., Goebel, B.M., Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology (1994) International Journal of Systematic and Evolutionary Microbiology, 44, pp. 846-849
  • Sunnotel, O., Nigam, P., Pectinolytic activity of bacteria isolated from soil and two fungal strains during submerged fermentation (2002) World Journal of Microbiology and Biotechnology, 18, pp. 835-839
  • Talbot, V., Bianchi, M., Bacterial proteolytic activity in sediments of the Subantarctic In-dian Ocean Sector (1997) Deep-Sea Research II, 44, pp. 1069-1084
  • Tatian, M., Sahade, R., Kowalke, J., Kivatinitz, S.C., Esnal, G., Food availability and gut contents in the ascidian Cnemidocarpa verrucosa at Potter Cove, Antarctica (2002) Polar Biology, 25, pp. 58-64
  • Tropeano, M., Coria, S., Turjanski, A., Cicero, D., Bercovich, A., McCormack, W., Vázquez, S., Culturable heterotrophic bacteria from Potter Cove, Antarctica, and their hydrolytic enzymes production (2012) Polar Research, 31, p. 18507
  • Truong, L.V., Tuyen, H., Helmke, E., Binh, L.T., Schweder, T., Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes (2001) Extremophiles, 5, pp. 35-44
  • Tutino, M.L., Parrilli, E., Giaquinto, L., Duilio, A., Sannia, G., Feller, G., Marino, G., Secretion of alpha-amylase from Pseudoalteromonas haloplanktis TAB23: Two different pathways in different hosts (2002) Journal of Bacteriology, 184, pp. 5814-5817
  • Ulrich, A., Klimke, G., Andwirth, S., Diversity and activity of cellulose-decomposing bacte-ria, isolated from a sandy and a loamy soil after long-term manure application (2007) Microbial Ecol-ogy, 55, pp. 512-522
  • Van Petegem, F., Collins, T., Meuwis, M.A., Gerday, C., Feller, G., Van Beeumen, J., The structure of a cold-adapted family 8 xylanase at 1.3 Å resolution. Structural adaptations to cold and investgation of the active site (2003) Journal of Biological Chemistry, 278, pp. 7531-7539
  • Vázquez, S.C., Coria, S.H., McCormack, W.P., Extracellular proteases from eight psychrotolerant Antarctic strains (2004) Microbial Research, 159, pp. 157-166
  • Vázquez, S.C., Ruberto, L., McCormack, W.P., Properties of extracellular proteases from three psychrotolerant Stenotrophomonas maltophilia isolated from Antarctic soil (2005) Polar Biology, 28, pp. 319-325
  • Vázquez, S.C., Hernandez, E., McCormack, W.P., Extracellular proteases from the Antarctic marine Pseudoalteromonas sp. P96-47 strain (2008) Revista Argentina de Microbiologia, 40, pp. 63-71
  • Williams, P.G., Panning for chemical gold: Marine bacteria as a source of new therapeutics (2009) Trends in Biotechnology, 27, pp. 45-52
  • Xiong, H., Song, L., Xu, Y., Tsoi, M.Y., Dobretsov, S., Qian, P.Y., Characterization of proteolytic bacteria from the Aleutian deep-sea and their proteases (2007) Journal of Industrial Micro-biology and Biotechnology, 34, pp. 63-71
  • Zeng, R., Xiong, P., Wen, J., Characterization and gene cloning of a cold-active cellulase from a deep-sea psychrotrophic bacterium Pseudoalteromonas sp. DY3 (2006) Extremophiles, 10, pp. 79-82
  • Zhou, M.Y., Chen, X.L., Zhao, H.L., Dang, H.Y., Luan, X.W., Zhang, X.Y., He, H.L., Zhang, Y.Z., Diversity of both the culturable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea (2009) Microbial Ecology, 58, pp. 582-590
  • Zhou, M.Y., Chen, X.L., Zhao, H.L., Dang, H.Y., Luan, X.W., Zhang, X.Y., He, H.L., Zhang, Y.Z., Diversity of both the culturable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea (2009) Microbial Ecology, 58, pp. 582-590

Citas:

---------- APA ----------
Tropeano, M., Vázquez, S., Coria, S., Turjanski, A., Cicero, D., Bercovich, A. & Mac Cormack, W. (2013) . Extracellular hydrolytic enzyme production by proteolytic bacteria from the Antarctic. Polish Polar Research, 34(3), 253-267.
http://dx.doi.org/10.2478/popore-2013-0014
---------- CHICAGO ----------
Tropeano, M., Vázquez, S., Coria, S., Turjanski, A., Cicero, D., Bercovich, A., et al. "Extracellular hydrolytic enzyme production by proteolytic bacteria from the Antarctic" . Polish Polar Research 34, no. 3 (2013) : 253-267.
http://dx.doi.org/10.2478/popore-2013-0014
---------- MLA ----------
Tropeano, M., Vázquez, S., Coria, S., Turjanski, A., Cicero, D., Bercovich, A., et al. "Extracellular hydrolytic enzyme production by proteolytic bacteria from the Antarctic" . Polish Polar Research, vol. 34, no. 3, 2013, pp. 253-267.
http://dx.doi.org/10.2478/popore-2013-0014
---------- VANCOUVER ----------
Tropeano, M., Vázquez, S., Coria, S., Turjanski, A., Cicero, D., Bercovich, A., et al. Extracellular hydrolytic enzyme production by proteolytic bacteria from the Antarctic. Pol. Polar Res. 2013;34(3):253-267.
http://dx.doi.org/10.2478/popore-2013-0014