Artículo

Ferrari, P.A.; Rolla, L.T. "Yaglom limit via Holley inequality" (2015) Brazilian Journal of Probability and Statistics. 29(2):413-426
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Let S be a countable set provided with a partial order and a minimal element. Consider a Markov chain on S ∪ {0} absorbed at 0 with a quasi-stationary distribution. We use Holley inequality to obtain sufficient conditions under which the following hold. The trajectory of the chain starting from the minimal state is stochastically dominated by the trajectory of the chain starting from any probability on S, when both are conditioned to nonabsorption until a certain time. Moreover, the Yaglom limit corresponding to this deterministic initial condition is the unique minimal quasi-stationary distribution in the sense of stochastic order. As an application, we provide new proofs to classical results in the field. © Brazilian Statistical Association, 2015.

Registro:

Documento: Artículo
Título:Yaglom limit via Holley inequality
Autor:Ferrari, P.A.; Rolla, L.T.
Filiación:Departamento de Matemática, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Ciudad de Buenos Aires, 1428, Argentina
Palabras clave:Holley inequality; Quasi-limiting distributions; Quasi-stationary distributions; Yaglom limit
Año:2015
Volumen:29
Número:2
Página de inicio:413
Página de fin:426
DOI: http://dx.doi.org/10.1214/14-BJPS269
Título revista:Brazilian Journal of Probability and Statistics
Título revista abreviado:Braz. J. Prob. Stat.
ISSN:01030752
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01030752_v29_n2_p413_Ferrari

Referencias:

  • Cavender, J.A., Quasi-stationary distributions of birth-and-death processes (1978) Adv. In Appl. Probab, 10, pp. 570-586. , MR0501388
  • Collet, P., Martínez, S., San Martín, J., Markov Chains, Diffusions and Dynamical Systems (2013) Probability and Its Applications (New York), , Heidelberg: Springer, MR2986807
  • Daley, D.J., Quasi-stationary behaviour of a left-continuous random walk (1969) Ann. Math. Statist, 40, pp. 532-539. , MR0246374
  • Van Doorn, E.A., Schrijner, P., Geometric ergodicity and quasi-stationarity in discretetime birth-death processes (1995) J. Austral. Math. Soc. Ser. B, 37, pp. 121-144. , MR1359177
  • Van Doorn, E.A., Schrijner, P., Ratio limits and limiting conditional distributions for discrete-time birth-death processes (1995) J. Math. Anal. Appl, 190, pp. 263-284. , MR1314118
  • Ferrari, P.A., Kesten, H., Martinez, S., Picco, P., Existence of quasi-stationary distributions. A renewal dynamical approach (1995) Ann. Probab, 23, pp. 501-521. , MR1334159
  • Ferrari, P.A., Martinez, S., Picco, P., Some properties of quasi-stationary distributions in the birth and death chains: A dynamical approach (1991) Instabilities and Nonequilibrium Structures, , III, Valparaíso, 1989. Math. Appl. 64, 177-187. Dordrecht: Kluwer Acad. Publ. MR1177850
  • Ferrari, P.A., Martínez, S., Picco, P., Existence of nontrivial quasi-stationary distributions in the birth-death chain (1992) Adv. In Appl. Probab, 24, pp. 795-813. , MR1188953
  • Georgii, H.-O., Häggström, O., Maes, C., The random geometry of equilibrium phases (2001) Phase Transitions and Critical Phenomena, 18, pp. 1-142. , San Diego, CA: Academic Press, MR2014387
  • Holley, R., Remarks on the FKG inequalities (1974) Comm. Math. Phys, 36, pp. 227-231. , MR0341552
  • Iglehart, D.L., Random walks with negative drift conditioned to stay positive (1974) J. Appl. Probab, 11, pp. 742-751. , MR0368168
  • Kesten, H., A ratio limit theorem for (Sub) Markov chains on {1, 2, . . .} with bounded jumps (1995) Adv. In Appl. Probab, 27, pp. 652-691. , MR1341881
  • Lindvall, T., On Strassen’s theorem on stochastic domination (1999) Electron. Commun. Probab, 4, pp. 51-59. , (electronic). MR1711599
  • Pollett, P.K., (2014) Quasi-Stationary Distributions: A Bibliography, , http://www.maths.uq.edu.au/~pkp/papers/qsds/qsds.pdf
  • Seneta, E., Quasi-stationary behaviour in the random walk with continuous time (1966) Austral. J. Statist, 8, pp. 92-98. , MR0208688
  • Seneta, E., Vere-Jones, D., On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states (1966) J. Appl. Probab, 3, pp. 403-434. , MR0207047

Citas:

---------- APA ----------
Ferrari, P.A. & Rolla, L.T. (2015) . Yaglom limit via Holley inequality. Brazilian Journal of Probability and Statistics, 29(2), 413-426.
http://dx.doi.org/10.1214/14-BJPS269
---------- CHICAGO ----------
Ferrari, P.A., Rolla, L.T. "Yaglom limit via Holley inequality" . Brazilian Journal of Probability and Statistics 29, no. 2 (2015) : 413-426.
http://dx.doi.org/10.1214/14-BJPS269
---------- MLA ----------
Ferrari, P.A., Rolla, L.T. "Yaglom limit via Holley inequality" . Brazilian Journal of Probability and Statistics, vol. 29, no. 2, 2015, pp. 413-426.
http://dx.doi.org/10.1214/14-BJPS269
---------- VANCOUVER ----------
Ferrari, P.A., Rolla, L.T. Yaglom limit via Holley inequality. Braz. J. Prob. Stat. 2015;29(2):413-426.
http://dx.doi.org/10.1214/14-BJPS269