Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Manipulation of global regulators is one of the strategies used for the construction of bacterial strains suitable for the synthesis of bioproducts. However, the pleiotropic effects of these regulators can vary under different conditions and are often strain dependent. This study analyzed the effects of ArcA, CreC, Cra, and Rob using single deletion mutants of the well-characterized and completely sequenced Escherichia coli strain BW25113. Comparison of the effects of each regulator on the synthesis of major extracellular metabolites, tolerance to several compounds, and synthesis of native and nonnative bioproducts under different growth conditions allowed the discrimination of the particular phenotypes that can be attributed to the individual mutants and singled out Cra and ArcA as the regulators with the most important effects on bacterial metabolism. These data were used to identify the most suitable backgrounds for the synthesis of the reduced bioproducts succinate and 1,3-propanediol (1,3-PDO). The Δcra mutant was further modified to enhance succinate synthesis by the addition of enzymes that increase NADH and CO 2 availability, achieving an 80% increase compared to the parental strain. Production of 1,3-PDO in the ΔarcA mutant was optimized by overexpression of PhaP, which increased more than twice the amount of the diol compared to the wild type in a semidefined medium using glycerol, resulting in 24 g · liter -1 of 1,3-PDO after 48 h, with a volumetric productivity of 0.5 g · liter -1 h -1 . © 2018 American Society for Microbiology.

Registro:

Documento: Artículo
Título:Microbial cell factories à la carte: Elimination of global regulators Cra and ArcA generates metabolic backgrounds suitable for the synthesis of bioproducts in Escherichia coli
Autor:Egoburo, D.E.; Peña, R.D.; Alvarez, D.S.; Godoy, M.S.; Mezzina, M.P.; Pettinari, M.J.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
Palabras clave:1,3-propanediol; ArcA; Cra; Escherichia coli; Global regulators; PhaP
Año:2018
Volumen:84
Número:19
DOI: http://dx.doi.org/10.1128/AEM.01337-18
Título revista:Applied and Environmental Microbiology
Título revista abreviado:Appl. Environ. Microbiol.
ISSN:00992240
CODEN:AEMID
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00992240_v84_n19_p_Egoburo

Referencias:

  • Bettenbrock, K., Bai, H., Ederer, M., Green, J., Hellingwerf, K.J., Holcombe, M., Kunz, S., Poole, R.K., Towards a systems level understanding of the oxygen response of Escherichia coli (2014) Adv Microb Physiol, 64, pp. 65-114. , https://doi.org/10.1016/B978-0-12-800143-1.00002-6
  • Shimizu, K., Metabolic regulation of a bacterial cell system with emphasis on Escherichia coli metabolism (2013) ISRN Biochem, 2013, pp. 1-47. , https://doi.org/10.1155/2013/637897
  • Kochanowski, K., Gerosa, L., Brunner, S.F., Christodoulou, D., Nikolaev, Y.V., Sauer, U., Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli (2017) Mol Syst Biol, 13, p. 903. , https://doi.org/10.15252/msb.20167402
  • Ruiz, J.A., de Almeida, A., Godoy, M.S., Mezzina, M.P., Bidart, G.N., Méndez, B.S., Pettinari, M.J., Nikel, P.I., Escherichia coli redox mutants as microbial cell factories for the synthesis of reduced biochemicals (2012) Comput Struct Biotechnol J, 3. , https://doi.org/10.5936/csbj.201210019
  • Nikel, P.I., Pettinari, M.J., Galvagno, M.A., Méndez, B.S., Poly(3-hydroxybutyrate) synthesis from glycerol by a recombinant Escherichia coli arcA mutant in fed-batch microaerobic cultures (2008) Appl Microbiol Biotechnol, 77, pp. 1337-1343. , https://doi.org/10.1007/s00253-007-1255-7
  • Botsford, J.L., Harman, J.G., Cyclic AMP in prokaryotes (1992) Microbiol Rev, 56, pp. 100-122
  • Saier, M.H., Ramseier, T.M., The catabolite repressor/activator (Cra) protein of enteric bacteria (1996) Microbiology, 178, pp. 3411-3417
  • Chin, A.M., Feucht, B.U., Saier, M.H., Evidence for regulation of gluconeogenesis by the fructose phosphotransferase system in Salmonella typhimurium (1987) J Bacteriol, 169, pp. 897-899. , https://doi.org/10.1128/jb.169.2.897-899.1987
  • Kotte, O., Zaugg, J.B., Heinemann, M., Bacterial adaptation through distributed sensing of metabolic fluxes (2010) Mol Syst Biol, 6, pp. 1-9. , https://doi.org/10.1038/msb.2010.10
  • Shimada, T., Yamamoto, K., Ishihama, A., Novel members of the Cra regulon involved in carbon metabolism in Escherichia coli (2011) J Bacteriol, 193, pp. 649-659. , https://doi.org/10.1128/JB.01214-10
  • Zhang, Z., Aboulwafa, M., Saier, M.H., Regulation of crp gene expression by the catabolite repressor/activator, Cra, in Escherichia coli (2014) J Mol Microbiol Biotechnol, 24, pp. 135-141. , https://doi.org/10.1159/000362722
  • Gunsalus, R.P., Control of electron flow in Escherichia coli: coordinated transcription of respiratory pathway genes (2006) J Bacteriol, 174, pp. 7069-7074. , https://doi.org/10.1128/jb.174.22.7069-7074.1992
  • Iuchi, S., Lin, E.C., arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways (1988) Proc Natl Acad Sci U S A, 85, pp. 1888-1892. , https://doi.org/10.1073/pnas.85.6.1888
  • Shalel-Levanon, S., San, K.Y., Bennett, G.N., Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions (2005) Biotechnol Bioeng, 92, pp. 147-159. , https://doi.org/10.1002/bit.20583
  • Nizam, S.A., Zhu, J., Ho, P.Y., Shimizu, K., Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under aerobic condition (2009) Biochem Eng J, 44, pp. 240-250. , https://doi.org/10.1016/j.bej.2008.12.017
  • Lynch, A.S., Lin, E.C., Transcriptional control mediated by the ArcA two-component response regulator protein of Escherichia coli: characterization of DNA binding at target promoters (1996) J Bacteriol, 178, pp. 6238-6249. , https://doi.org/10.1128/jb.178.21.6238-6249.1996
  • Nikel, P.I., Pettinari, M.J., Galvagno, M.A., Méndez, B.S., Poly(3-hydroxybutyrate) synthesis by recombinant Escherichia coli arcA mutants in microaerobiosis (2006) Appl Environ Microbiol, 72, pp. 2614-2620. , https://doi.org/10.1128/AEM.72.4.2614-2620.2006
  • Cariss, S.J.L., Tayler, A.E., Avison, M.B., Defining the growth conditions and promoter-proximal DNA sequences required for activation of gene expression by CreBC in Escherichia coli (2008) J Bacteriol, 190, pp. 3930-3939. , https://doi.org/10.1128/JB.00108-08
  • Zhou, L., Lei, X.H., Bochner, B.R., Wanner, B.L., Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all twocomponent systems (2003) J Bacteriol, 185, pp. 4956-4972. , https://doi.org/10.1128/JB.185.16.4956-4972.2003
  • Godoy, M.S., Nikel, P.I., Cabrera Gomez, J.G., Pettinari, M.J., The CreC regulator of Escherichia coli, a new target for metabolic manipulations (2016) Appl Environ Microbiol, 82, pp. 244-254. , https://doi.org/10.1128/AEM.02984-15
  • Nikel, P.I., Zhu, J., San, K.Y., Méndez, B.S., Bennett, G.N., Metabolic flux analysis of Escherichia coli creB and arcA mutants reveals shared control of carbon catabolism under microaerobic growth conditions (2009) J Bacteriol, 191, pp. 5538-5548. , https://doi.org/10.1128/JB.00174-09
  • Martin, R.G., Rosner, J.L., Genomics of the marA/soxS/rob regulon of Escherichia coli: identification of directly activated promoters by application of molecular genetics and informatics to microarray data (2002) Mol Microbiol, 44, pp. 1611-1624. , https://doi.org/10.1046/j.1365-2958.2002.02985.x
  • Bennik, M.H.J., Pomposiello, P.J., Thorne, D.F., Demple, B., Defining a rob regulon in Escherichia coli by using transposon mutagenesis (2000) J Bacteriol, 182, pp. 3794-3801. , https://doi.org/10.1128/JB.182.13.3794-3801.2000
  • Okochi, M., Kurimoto, M., Shimizu, K., Honda, H., Effect of global transcriptional regulators related to carbohydrate metabolism on organic solvent tolerance in Escherichia coli (2008) J Biosci Bioeng, 105, pp. 389-394. , https://doi.org/10.1263/jbb.105.389
  • Deng, Z., Shan, Y., Pan, Q., Gao, X., Yan, A., Anaerobic expression of the gadE-mdtEF multidrug efflux operon is primarily regulated by the twocomponent system ArcBA through antagonizing the H-NS mediated repression (2013) Front Microbiol, 4, p. 194. , https://doi.org/10.3389/fmicb.2013.00194
  • Lennen, R.M., Politz, M.G., Kruziki, M.A., Pfleger, B.F., Identification of transport proteins involved in free fatty acid efflux in Escherichia coli (2013) J Bacteriol, 195, pp. 135-144. , https://doi.org/10.1128/JB.01477-12
  • Zhu, L.W., Xia, S.T., Wei, L.N., Li, H.M., Yuan, Z.P., Tang, Y.J., Enhancing succinic acid biosynthesis in Escherichia coli by engineering its global transcription factor, catabolite repressor/activator (Cra) (2016) Sci Rep, 6, pp. 1-11. , https://doi.org/10.1038/s41598-016-0001-8
  • Alexeeva, S., Hellingwerf, K.J., Teixeira de Mattos, M.J., Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions (2003) J Bacteriol, 185, pp. 204-209. , https://doi.org/10.1128/JB.185.1.204-209.2003
  • Nizam, S.A., Shimizu, K., Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under anaerobic and microaerobic conditions (2008) Biochem Eng J, 42, pp. 229-236. , https://doi.org/10.1016/j.bej.2008.06.021
  • Son, Y.J., Phue, J.N., Trinh, L.B., Lee, S.J., Shiloach, J., The role of Cra in regulating acetate excretion and osmotic tolerance in Escherichia coli K-12 and E. coli B at high density growth (2011) Microb Cell Fact, 10, pp. 1-9. , https://doi.org/10.1186/1475-2859-10-1
  • Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Mori, H., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection (2006) Mol Syst Biol, 2, p. 1. , https://doi.org/10.1038/msb4100050
  • Grenier, F., Matteau, D., Baby, V., Rodrigue, S., Complete genome sequence of Escherichia coli BW25113 (2014) Genome Announc, 2 (5). , https://doi.org/10.1128/genomeA.01038-14
  • Yao, R., Kurata, H., Shimizu, K., Effect of cra gene mutation on the metabolism of Escherichia coli for a mixture of multiple carbon sources (2013) Adv Biosci Biotechnol, 4, pp. 477-486. , https://doi.org/10.4236/abb.2013.43A063
  • Nikel, P.I., de Almeida, A., Pettinari, M.J., Méndez, B.S., The legacy of HfrH: mutations in the two-component system CreBC are responsible for the unusual phenotype of an Escherichia coli arcA mutant (2008) J Bacteriol, 190, pp. 3404-3407. , https://doi.org/10.1128/JB.00040-08
  • Nikel, P.I., Pettinari, M.J., Ramírez, M.C., Galvagno, M.A., Méndez, B.S., Escherichia coli arcA mutants: metabolic profile characterization of microaerobic cultures using glycerol as a carbon source (2008) J Mol Microbiol Biotechnol, 15, pp. 48-54. , https://doi.org/10.1159/000111992
  • Goulas, K.A., Toste, F.D., Combining microbial production with chemical upgrading (2016) Curr Opin Biotechnol, 38, pp. 47-53. , https://doi.org/10.1016/j.copbio.2015.12.019
  • Ruiz, J.A., Fernández, R.O., Nikel, P.I., Méndez, B.S., Pettinari, M.J., dye (arc) mutants: insights into an unexplained phenotype and its suppression by the synthesis of poly (3-hydroxybutyrate) in Escherichia coli recombinants (2006) FEMS Microbiol Lett, 258, pp. 55-60. , https://doi.org/10.1111/j.1574-6968.2006.00196.x
  • de Almeida, A., Giordano, A.M., Nikel, P.I., Pettinari, M.J., Effects of aeration on the synthesis of poly(3-hydroxybutyrate) from glycerol and glucose in recombinant Escherichia coli (2010) Appl Environ Microbiol, 76, pp. 2036-2040. , https://doi.org/10.1128/AEM.02706-09
  • Yang, M., Yun, J., Zhang, H., Magocha, T.A., Zabed, H., Xue, Y., Fokum, E., Qi, X., Genetically engineered strains: application and advances for 1, 3-propanediol production from glycerol (2018) Food Technol Biotechnol, 56, pp. 3-15. , https://doi.org/10.17113/ftb.56.01.18.5445
  • Sun, Y.-Q., Shen, J.-T., Yan, L., Zhou, J.-J., Jiang, L.-L., Chen, Y., Yuan, J.-L., Xiu, Z.-L., Advances in bioconversion of glycerol to 1, 3-propanediol: prospects and challenges (2018) Process Biochem, 71, pp. 134-146. , https://doi.org/10.1016/j.procbio.2018.05.009
  • Da Silva, G.P., De Lima, C.J.B., Contiero, J., Production and productivity of 1, 3-propanediol from glycerol by Klebsiella pneumoniae GLC29 (2015) Catal Today, 257, pp. 259-266. , https://doi.org/10.1016/j.cattod.2014.05.016
  • Avison, M.B., Horton, R.E., Walsh, T.R., Bennett, P.M., Escherichia coli CreBC is a global regulator of gene expression that responds to growth in minimal media (2001) J Biol Chem, 276, pp. 26955-26961. , https://doi.org/10.1074/jbc.M011186200
  • Pettinari, M.J., Nikel, P.I., Ruiz, J.A., Méndez, B.S., ArcA redox mutants as a source of reduced bioproducts (2008) J Mol Microbiol Biotechnol, 15, pp. 41-47. , https://doi.org/10.1159/000111991
  • Martínez-Antonio, A., Collado-Vides, J., Identifying global regulators in transcriptional regulatory networks in bacteria (2003) Curr Opin Microbiol, 6, pp. 482-489. , https://doi.org/10.1016/j.mib.2003.09.002
  • Perrenoud, A., Sauer, U., Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli (2005) J Bacteriol, 187, pp. 3171-3179. , https://doi.org/10.1128/JB.187.9.3171-3179.2005
  • Kochanowski, K., Volkmer, B., Gerosa, L., Haverkorn van Rijsewijk, B.R., Schmidt, A., Heinemann, M., Functioning of a metabolic flux sensor in Escherichia coli (2013) Proc Natl Acad Sci U S A, 110, pp. 1130-1135. , https://doi.org/10.1073/pnas.1202582110
  • Salmon, K.A., Hung, S., Steffen, N.R., Krupp, R., Baldi, P., Hatfield, G.W., Gunsalus, R.P., Global gene expression profiling in Escherichia coli K12 (2005) J Biol Chem, 280, pp. 15084-15096. , https://doi.org/10.1074/jbc.M414030200
  • Nikel, P.I., Ramirez, M.C., Pettinari, M.J., Méndez, B.S., Galvagno, M.A., Ethanol synthesis from glycerol by Escherichia coli redox mutants expressing adhE from Leuconostoc mesenteroides (2010) J Appl Microbiol, 109, pp. 492-504. , https://doi.org/10.1111/j.1365-2672.2010.04668.x
  • Nicolaou, S.A., Gaida, S.M., Papoutsakis, E.T., A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation (2010) Metab Eng, 12, pp. 307-331. , https://doi.org/10.1016/j.ymben.2010.03.004
  • Mezzina, M.P., Wetzler, D.E., de Almeida, A., Dinjaski, N., Prieto, M.A., Pettinari, M.J., A phasin with extra talents: a polyhydroxyalkanoate granuleassociated protein has chaperone activity (2015) Environ Microbiol, 17, pp. 1765-1776. , https://doi.org/10.1111/1462-2920.12636
  • Mezzina, M.P., Álvarez, D.S., Egoburo, D.E., Peña, R.D., Nikel, P.I., Pettinari, M.J., A new player in the biorefineries field: phasin PhaP enhances tolerance to solvents and boosts ethanol and 1, 3-propanediol synthesis in Escherichia coli (2017) Appl Environ Microbiol, 83. , https://doi.org/10.1128/AEM.00662-17
  • Lu, X.Y., Ren, S.L., Lu, J.Z., Zong, H., Song, J., Zhuge, B., Enhanced 1, 3-propanediol production in Klebsiella pneumoniae by a combined strategy of strengthening the TCA cycle and weakening the glucose effect (2018) J Appl Microbiol, 124, pp. 682-690. , https://doi.org/10.1111/jam.13685
  • Cervin, M.A., (2008) Process for the biological production of 1, 3-propanediol with high yield, , May US patent 7, 371, 558 B2
  • Maervoet, V.E.T., De Maeseneire, S.L., Avci, F.G., Beauprez, J., Soetaert, W.K., De Mey, M., High yield 1, 3-propanediol production by rational engi-neering of the 3-hydroxypropionaldehyde bottleneck in Citrobacter werkmanii (2016) Microb Cell Fact, 15, pp. 1-11. , https://doi.org/10.1186/s12934-015-0402-6
  • Baba, T., Huan, H.C., Datsenko, K., Wanner, B.L., Mori, H., The applications of systematic in-frame, single-gene knockout mutant collection of Escherichia coli K-12 (2008) Methods Mol Biol, 416, pp. 183-194. , https://doi.org/10.1007/978-1-59745-321-9_12
  • Cherepanov, P.P., Wackernagel, W., Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant (1995) Gene, 158, pp. 9-14. , https://doi.org/10.1016/0378-1119(95)00193-A
  • Schroll, G., Resch, S., Gruber, K., Wanner, G., Lubitz, W., Heterologous ϕX174 gene E-expression in Ralstonia eutropha: E-mediated lysis is not restricted to γ-subclass of proteobacteria (1998) J Biotechnol, 66, pp. 211-217. , https://doi.org/10.1016/S0168-1656(98)00128-X
  • Nikel, P.I., Pettinari, M.J., Méndez, B.S., Galvagno, M.A., Statistical optimization of a culture medium for biomass and poly(3-hydroxybutyrate) production by a recombinant Escherichia coli strain using agroindustrial byproducts (2005) Int Microbiol, 8, pp. 243-250
  • Datsenko, K.A., Wanner, B.L., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products (2000) Proc Natl Acad Sci U S A, 97, pp. 6640-6645. , https://doi.org/10.1073/pnas.120163297
  • de Almeida, A., Nikel, P.I., Giordano, A.M., Pettinari, M.J., Effects of granule-associated protein PhaP on glycerol-dependent growth and polymer production in poly(3-hydroxybutyrate)-producing Escherichia coli (2007) Appl Environ Microbiol, 73, pp. 7912-7916. , https://doi.org/10.1128/AEM.01900-07
  • Silva-Rocha, R., Martínez-García, E., Calles, B., Chavarría, M., Arce-Rodríguez, A., De Las Heras, A., Páez-Espino, A.D., De Lorenzo, V., The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes (2013) Nucleic Acids Res, 41, pp. 666-675. , https://doi.org/10.1093/nar/gks1119
  • Flora, A.B., (2015) Detecção e clonagem de genes de biossíntese de 1, 3-propanodiol a partir de glicerol em Klebsiella pneumoniae GLC29, , Programa de Pós-Graduação Interunidades em Biotecnologia USP-IPT-I, Istituto Butantan, Sao Paolo, Brazil
  • Wang, W., Li, Z., Xie, J., Ye, Q., Production of succinate by a pflB ldhA double mutant of Escherichia coli overexpressing malate dehydrogenase (2009) Bioprocess Biosyst Eng, 32, pp. 737-745. , https://doi.org/10.1007/s00449-009-0298-9
  • Berríos-Rivera, S., Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase (2002) Metab Eng, 4, pp. 217-229. , https://doi.org/10.1006/mben.2002.0227
  • Egoburo, D.E., Diaz Peña, R., Kolender, A., Pettinari, M.J., Optimization and validation of a GC-FID method for quantitative determination of 1, 3-propanediol in bacterial culture aqueous supernatants containing glycerol (2017) Chromatographia, 80, pp. 1121-1127. , https://doi.org/10.1007/s10337-017-3310-6

Citas:

---------- APA ----------
Egoburo, D.E., Peña, R.D., Alvarez, D.S., Godoy, M.S., Mezzina, M.P. & Pettinari, M.J. (2018) . Microbial cell factories à la carte: Elimination of global regulators Cra and ArcA generates metabolic backgrounds suitable for the synthesis of bioproducts in Escherichia coli. Applied and Environmental Microbiology, 84(19).
http://dx.doi.org/10.1128/AEM.01337-18
---------- CHICAGO ----------
Egoburo, D.E., Peña, R.D., Alvarez, D.S., Godoy, M.S., Mezzina, M.P., Pettinari, M.J. "Microbial cell factories à la carte: Elimination of global regulators Cra and ArcA generates metabolic backgrounds suitable for the synthesis of bioproducts in Escherichia coli" . Applied and Environmental Microbiology 84, no. 19 (2018).
http://dx.doi.org/10.1128/AEM.01337-18
---------- MLA ----------
Egoburo, D.E., Peña, R.D., Alvarez, D.S., Godoy, M.S., Mezzina, M.P., Pettinari, M.J. "Microbial cell factories à la carte: Elimination of global regulators Cra and ArcA generates metabolic backgrounds suitable for the synthesis of bioproducts in Escherichia coli" . Applied and Environmental Microbiology, vol. 84, no. 19, 2018.
http://dx.doi.org/10.1128/AEM.01337-18
---------- VANCOUVER ----------
Egoburo, D.E., Peña, R.D., Alvarez, D.S., Godoy, M.S., Mezzina, M.P., Pettinari, M.J. Microbial cell factories à la carte: Elimination of global regulators Cra and ArcA generates metabolic backgrounds suitable for the synthesis of bioproducts in Escherichia coli. Appl. Environ. Microbiol. 2018;84(19).
http://dx.doi.org/10.1128/AEM.01337-18