Artículo

Russo, D.M.; Abdian, P.L.; Posadas, D.M.; Williams, A.; Vozza, N.; Giordano, W.; Kannenberg, E.; Allan Downie, J.; Zorreguietaa, A. "Lipopolysaccharide O-chain core region required for cellular cohesion and compaction of In Vitro and root biofilms developed by Rhizobium leguminosarum" (2015) Applied and Environmental Microbiology. 81(3):1013-1023
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The formation of biofilms is an important survival strategy allowing rhizobia to live on soil particles and plant roots. Within the microcolonies of the biofilm developed by Rhizobium leguminosarum, rhizobial cells interact tightly through lateral and polar connections, forming organized and compact cell aggregates. These microcolonies are embedded in a biofilm matrix, whose main component is the acidic exopolysaccharide (EPS). Our work shows that the O-chain core region of the R. leguminosarum lipopolysaccharide (LPS) (which stretches out of the cell surface) strongly influences bacterial adhesive properties and cell-cell cohesion. Mutants defective in the O chain or O-chain core moiety developed premature microcolonies in which lateral bacterial contacts were greatly reduced. Furthermore, cell-cell interactions within the microcolonies of the LPS mutants were mediated mostly through their poles, resulting in a biofilm with an altered three-dimensional structure and increased thickness. In addition, on the root epidermis and on root hairs, O-antigen core-defective strains showed altered biofilm patterns with the typical microcolony compaction impaired. Taken together, these results indicate that the surface-exposed moiety of the LPS is crucial for proper cell-to-cell interactions and for the formation of robust biofilms on different surfaces. © 2015, American Society for Microbiology.

Registro:

Documento: Artículo
Título:Lipopolysaccharide O-chain core region required for cellular cohesion and compaction of In Vitro and root biofilms developed by Rhizobium leguminosarum
Autor:Russo, D.M.; Abdian, P.L.; Posadas, D.M.; Williams, A.; Vozza, N.; Giordano, W.; Kannenberg, E.; Allan Downie, J.; Zorreguietaa, A.
Filiación:Fundación Instituto Leloir and IIBBA CONICET, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
John Innes Centre, Norwich Research Park, Colney, Norwich, United Kingdom
Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
Palabras clave:Adhesion; Cell adhesion; Cell membranes; Chains; Compaction; Adhesive properties; Cell aggregates; Cell-cell interaction; Cell-to-cell interactions; Exopolysaccharides; Lipopolysaccharides; Rhizobium leguminosarum; Three-dimensional structure; Biofilms; antigen; biofilm; colony structure; germ cell; mutation; polysaccharide; rhizobacterium; survivorship; Bacteria (microorganisms); Rhizobium leguminosarum; lipopolysaccharide; O antigen; biofilm; DNA sequence; genetics; growth, development and aging; metabolism; microbiology; molecular genetics; physiology; plant root; Rhizobium leguminosarum; Biofilms; Lipopolysaccharides; Molecular Sequence Data; O Antigens; Plant Roots; Rhizobium leguminosarum; Sequence Analysis, DNA
Año:2015
Volumen:81
Número:3
Página de inicio:1013
Página de fin:1023
DOI: http://dx.doi.org/10.1128/AEM.03175-14
Título revista:Applied and Environmental Microbiology
Título revista abreviado:Appl. Environ. Microbiol.
ISSN:00992240
CODEN:AEMID
CAS:Lipopolysaccharides; O Antigens
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00992240_v81_n3_p1013_Russo

Referencias:

  • Gage, D.J., Infection and invasion of roots by symbiotic, nitrogenfixing rhizobia during nodulation of temperate legumes (2004) Microbiol Mol Biol Rev, 68, pp. 280-300. , http://dx.doi.org/10.1128/MMBR.68.2.280-300.2004
  • Cooper, J.E., Early interactions between legumes and rhizobia: dis-closing complexity in a molecular dialogue (2007) J Appl Microbiol, 103, pp. 1355-1365. , http://dx.doi.org/10.1111/j.1365-2672.2007.03366.x
  • Danhorn, T., Fuqua, C., Biofilm formation by plant-associated bacteria (2007) Annu Rev Microbiol, 61, pp. 401-422. , http://dx.doi.org/10.1146/annurev.micro.61.080706.093316
  • Downie, J.A., The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots (2010) FEMS Microbiol Rev, 34, pp. 150-170. , http://dx.doi.org/10.1111/j.1574-6976.2009.00205.x
  • Davey, M.E., O'Toole, G.A., Microbial biofilms: from ecology to molecular genetics (2000) Microbiol Mol Biol Rev, 64, pp. 847-867. , http://dx.doi.org/10.1128/MMBR.64.4.847-867.2000
  • Watnick, P., Kolter, R., Biofilm, city of microbes (2000) J Bacteriol, 182, pp. 2675-2679. , http://dx.doi.org/10.1128/JB.182.10.2675-2679.2000
  • Karatan, E., Watnick, P., Signals, regulatory networks, and materials that build and break bacterial biofilms (2009) Microbiol Mol Biol Rev, 73, pp. 310-347. , http://dx.doi.org/10.1128/MMBR.00041-08
  • Rudrappa, T., Biedrzycki, M.L., Bais, H.P., Causes and consequences of plant-associated biofilms (2008) FEMS Microbiol Ecol, 64, pp. 153-166. , http://dx.doi.org/10.1111/j.1574-6941.2008.00465.x
  • Russo, D.M., Williams, A., Edwards, A., Posadas, D.M., Finnie, C., Dankert, M., Downie, J.A., Zorreguieta, A., Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum (2006) J Bacteriol, 188, pp. 4474-4486. , http://dx.doi.org/10.1128/JB.00246-06
  • Merritt, P.M., Danhorn, T., Fuqua, C., Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation (2007) J Bacteriol, 189, pp. 8005-8014. , http://dx.doi.org/10.1128/JB.00566-07
  • Rinaudi, L., Fujishige, N.A., Hirsch, A.M., Banchio, E., Zorreguieta, A., Giordano, W., Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation (2006) Res Microbiol, 157, pp. 867-875. , http://dx.doi.org/10.1016/j.resmic.2006.06.002
  • Fujishige, N.A., Kapadia, N.N., De Hoff, P.L., Hirsch, A.M., Investigations of Rhizobium biofilm formation (2006) FEMS Microbiol Ecol, 56, pp. 195-206. , http://dx.doi.org/10.1111/j.1574-6941.2005.00044.x
  • Rinaudi, L.V., Gonzalez, J.E., The low-molecular-weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation (2009) J Bacteriol, 191, pp. 7216-7224. , http://dx.doi.org/10.1128/JB.01063-09
  • Sorroche, F.G., Rinaudi, L.V., Zorreguieta, A., Giordano, W., EPS II-dependent autoaggregation of Sinorhizobium meliloti planktonic cells (2010) Curr Microbiol, 61, pp. 465-470. , http://dx.doi.org/10.1007/s00284-010-9639-9
  • Fujishige, N.A., Lum, M.R., De Hoff, P.L., Whitelegge, J.P., Faull, K.F., Hirsch, A.M., Rhizobium common nod genes are required for biofilm formation (2008) Mol Microbiol, 67, pp. 504-515. , http://dx.doi.org/10.1111/j.1365-2958.2007.06064.x
  • Krehenbrink, M., Downie, J.A., Identification of protein secretion systems and novel secreted proteins in Rhizobium leguminosarum bv. viciae (2008) BMC Genomics, 9, p. 55. , http://dx.doi.org/10.1186/1471-2164-9-55
  • Abdian, P.L., Caramelo, J.J., Ausmees, N., Zorreguieta, A., RapA2 is a calcium-binding lectin composed of two highly conserved cadherin-like domains that specifically recognize Rhizobium leguminosarum acidic exopolysaccharides (2013) J Biol Chem, 288, pp. 2893-2904. , http://dx.doi.org/10.1074/jbc.M112.411769
  • Frederix, M., Edwards, A., Swiderska, A., Stanger, A., Karunakaran, R., Williams, A., Abbruscato, P., Downie, J.A., Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins (2014) Mol Microbiol, 93, pp. 464-478. , http://dx.doi.org/10.1111/mmi.12670
  • Williams, A., Wilkinson, A., Krehenbrink, M., Russo, D.M., Zorreguieta, A., Downie, J.A., Glucomannan-mediated attachment of Rhizobium leguminosarum to pea root hairs is required for competitive nodule infection (2008) J Bacteriol, 190, pp. 4706-4715. , http://dx.doi.org/10.1128/JB.01694-07
  • Dong, J., Signo, K.S., Vanderlinde, E.M., Yost, C.K., Dahms, T.E., Atomic force microscopy of a ctpA mutant in Rhizobium leguminosarum reveals surface defects linking CtpA function to biofilm formation (2011) Microbiology, 157, pp. 3049-3058. , http://dx.doi.org/10.1099/mic.0.051045-0
  • Carlson, R.W., Forsberg, L.S., Kannenberg, E.L., Lipopolysaccharides in Rhizobium-legume symbioses (2010) Subcell Biochem, 53, pp. 339-386. , http://dx.doi.org/10.1007/978-90-481-9078-2_16
  • De Castro, C., Molinaro, A., Lanzetta, R., Silipo, A., Parrilli, M., Lipopolysaccharide structures from Agrobacterium and Rhizobiaceae species (2008) Carbohydr Res, 343, pp. 1924-1933. , http://dx.doi.org/10.1016/j.carres.2008.01.036
  • Bhat, U.R., Mayer, H., Yokota, A., Hollingsworth, R.I., Carlson, R.W., Occurrence of lipid A variants with 27-hydroxyoctacosanoic acid in lipopolysaccharides from members of the family Rhizobiaceae (1991) J Bacteriol, 173, pp. 2155-2159
  • Carlson, R.W., Garci, F., Noel, D., Hollingsworth, R., The structures of the lipopolysaccharide core components from Rhizobium leguminosarum biovar phaseoli CE3 and two of its symbiotic mutants, CE109 and CE309 (1989) Carbohydr Res, 195, pp. 101-110
  • Carlson, R.W., Heterogeneity of Rhizobium lipopolysaccharides (1984) J Bacteriol, 158, pp. 1012-1017
  • Forsberg, L.S., Carlson, R.W., Structural characterization of the primary O-antigenic polysaccharide of the Rhizobium leguminosarum 3841 lipopolysaccharide and identification of a new 3-acetimidoylamino-3-deoxyhexuronic acid glycosyl component: a unique O-methylated glycan of uniform size, containing 6-deoxy-3-O-methyl-D-talose, nacetylquinovosamine, and rhizoaminuronic acid (3-acetimidoylamino-3-deoxy-D-gluco-hexuronic acid) (2008) J Biol Chem, 283, pp. 16037-16050. , http://dx.doi.org/10.1074/jbc.M709615200
  • Perotto, S., Brewin, N.J., Kannenberg, E.L., Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaccharide-defective mutants of Rhizobium leguminosarum strain 3841 (1994) Mol Plant Microbe Interact, 7, pp. 99-112. , http://dx.doi.org/10.1094/MPMI-7-0099
  • Kannenberg, E.L., Carlson, R.W., Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development (2001) Mol Microbiol, 39, pp. 379-391. , http://dx.doi.org/10.1046/j.1365-2958.2001.02225.x
  • D'Haeze, W., Leoff, C., Freshour, G., Noel, K.D., Carlson, R.W., Rhizobium etli CE3 bacteroid lipopolysaccharides are structurally similar but not identical to those produced by cultured CE3 bacteria (2007) J Biol Chem, 282, pp. 17101-17113. , http://dx.doi.org/10.1074/jbc.M611669200
  • Lerouge, I., Vanderleyden, J., O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions (2002) FEMS Microbiol Rev, 26, pp. 17-47
  • Kannenberg, E.L., Brewin, N.J., Expression of a cell surface antigen from Rhizobium leguminosarum 3841 is regulated by oxygen and pH (1989) J Bacteriol, 171, pp. 4543-4548
  • Bhat, U.R., Carlson, R.W., Chemical characterization of pHdependent structural epitopes of lipopolysaccharides from Rhizobium leguminosarum biovar phaseoli (1992) J Bacteriol, 174, pp. 2230-2235
  • Noel, K.D., Box, J.M., Bonne, V.J., 2-O-methylation of fucosyl residues of a rhizobial lipopolysaccharide is increased in response to host exudate and is eliminated in a symbiotically defective mutant (2004) Appl Environ Microbiol, 70, pp. 1537-1544. , http://dx.doi.org/10.1128/AEM.70.3.1537-1544.2004
  • Vanderlinde, E.M., Muszynski, A., Harrison, J.J., Koval, S.F., Foreman, D.L., Ceri, H., Kannenberg, E.L., Yost, C.K., Rhizobium leguminosarum biovar viciae 3841, deficient in 27-hydroxyoctacosanoatemodified lipopolysaccharide, is impaired in desiccation tolerance, biofilm formation and motility (2009) Microbiology, 155, pp. 3055-3069. , http://dx.doi.org/10.1099/mic.0.025031-0
  • Brown, D.B., Forsberg, L.S., Kannenberg, E.L., Carlson, R.W., Characterization of galacturonosyl transferase genes rgtA, rgtB, rgtC, rgtD, and rgtE responsible for lipopolysaccharide synthesis in nitrogen-fixing endosymbiont Rhizobium leguminosarum: lipopolysaccharide core and lipid galacturonosyl residues confer membrane stability (2012) J Biol Chem, 287, pp. 935-949. , http://dx.doi.org/10.1074/jbc.M111.311571
  • Spiers, A.J., Rainey, P.B., The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity (2005) Microbiology, 151, pp. 2829-2839. , http://dx.doi.org/10.1099/mic.0.27984-0
  • Li, J., Wang, N., The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence (2011) Mol Plant Pathol, 12, pp. 381-396. , http://dx.doi.org/10.1111/j.1364-3703.2010.00681.x
  • Abu-Lail, L.I., Liu, Y., Atabek, A., Camesano, T.A., Quantifying the adhesion and interaction forces between Pseudomonas aeruginosa and natural organic matter (2007) Environ Sci Technol, 41, pp. 8031-8037. , http://dx.doi.org/10.1021/es071047o
  • Amini, S., Goodarzi, H., Tavazoie, S., Genetic dissection of an exogenously induced biofilm in laboratory and clinical isolates of E. coli (2009) PLoS Pathog, 5. , http://dx.doi.org/10.1371/journal.ppat.1000432
  • Beringer, J.E., R factor transfer in Rhizobium leguminosarum (1974) J Gen Microbiol, 84, pp. 188-198. , http://dx.doi.org/10.1099/00221287-84-1-188
  • Sherwood, M.T., Improved synthetic medium for the growth of Rhizobium (1970) J Appl Bacteriol, 33, pp. 708-713. , http://dx.doi.org/10.1111/j.1365-2672.1970.tb02253.x
  • Miller, J.H., Experiments in molecular genetics (1972), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; Zevenhuizen, L.P., Bertocchi, C., van Neerven, A.R., Congo red absorption and cellulose synthesis by Rhizobiaceae (1986) Antonie Van Leeuwenhoek, 52, pp. 381-386. , http://dx.doi.org/10.1007/BF00393465
  • Beringer, J.E., Beynon, J.L., Buchanan-Wollaston, A.V., Johnston, A.W.B., Transfer of the drug resistance transposon Tn5 to Rhizobium (1978) Nature, 276, pp. 633-634. , http://dx.doi.org/10.1038/276633a0
  • Young, J.P., Crossman, L.C., Johnston, A.W., Thomson, N.R., Ghazoui, Z.F., Hull, K.H., Wexler, M., Parkhill, J., The genome of Rhizobium leguminosarum has recognizable core and accessory components (2006) Genome Biol, 7, p. R34. , http://dx.doi.org/10.1186/gb-2006-7-4-r34
  • O'Toole, G.A., Pratt, L.A., Watnick, P.I., Newman, D.K., Weaver, V.B., Kolter, R., Genetic approaches to study of biofilms (1999) Methods Enzymol, 310, pp. 91-109. , http://dx.doi.org/10.1016/S0076-6879(99)10008-9
  • Allaway, D., Schofield, N.A., Leonard, M.E., Gilardoni, L., Finan, T.M., Poole, P.S., Use of differential fluorescence induction and optical trapping to isolate environmentally induced genes (2001) Environ Microbiol, 3, pp. 397-406. , http://dx.doi.org/10.1046/j.1462-2920.2001.00205.x
  • Heydorn, A., Nielsen, A.T., Hentzer, M., Sternberg, C., Givskov, M., Ersboll, B.K., Molin, S., Quantification of biofilm structures by the novel computer program COMSTAT (2000) Microbiology, 146, pp. 2395-2407
  • Westphal, O., Jann, K., Bacterial lipopolysaccharides (1965) Methods Carbohydr Chem, 5, pp. 83-91
  • Tsai, C.M., Frasch, C.E., A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels (1982) Anal Biochem, 119, pp. 115-119. , http://dx.doi.org/10.1016/0003-2697(82)90673-X
  • Brewin, N.J., Wood, E.A., Larkins, A.P., Galfre, G., Butcher, G.W., Analysis of lipopolysaccharide from root nodule bacteroids of Rhizobium leguminosarum using monoclonal antibodies (1986) J Gen Microbiol, 132, pp. 1959-1968
  • Kannenberg, E.L., Rathbun, E.A., Brewin, N.J., Molecular dissection of structure and function in the lipopolysaccharide of Rhizobium leguminosarum strain 3841 using monoclonal antibodies and genetic analysis (1992) Mol Microbiol, 6, pp. 2477-2487
  • Hollingsworth, R.I., Abe, M., Sherwood, J.E., Dazzo, F.B., Bacteriophage-induced acidic heteropolysaccharide lyases that convert the acidic heteropolysaccharides of Rhizobium trifolii into oligosaccharide units (1984) J Bacteriol, 160, pp. 510-516
  • Filisetti-Cozzi, T.M., Carpita, N.C., Measurement of uronic acids without interference from neutral sugars (1991) Anal Biochem, 197, pp. 157-162. , http://dx.doi.org/10.1016/0003-2697(91)90372-Z
  • Sherlock, O., Schembri, M.A., Reisner, A., Klemm, P., Novel roles for the AIDA adhesin from diarrheagenic Escherichia coli: cell aggregation and biofilm formation (2004) J Bacteriol, 186, pp. 8058-8065. , http://dx.doi.org/10.1128/JB.186.23.8058-8065.2004
  • Fahraeus, G., The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique (1957) J Gen Microbiol, 16, pp. 374-381. , http://dx.doi.org/10.1099/00221287-16-2-374
  • Beynon, J.L., Beringer, J.E., Johnston, A.W.B., Plasmids and host-range in Rhizobium leguminosarum and Rhizobium phaseoli (1980) Microbiology, 120, pp. 421-429
  • Allaway, D., Jeyaretnam, B., Carlson, R.W., Poole, P.S., Genetic and chemical characterization of a mutant that disrupts synthesis of the lipopolysaccharide core tetrasaccharide in Rhizobium leguminosarum (1996) J Bacteriol, 178, pp. 6403-6406
  • Kadrmas, J.L., Allaway, D., Studholme, R.E., Sullivan, J.T., Ronson, C.W., Poole, P.S., Raetz, C.R., Cloning and overexpression of glycosyltransferases that generate the lipopolysaccharide core of Rhizobium leguminosarum (1998) J Biol Chem, 273, pp. 26432-26440. , http://dx.doi.org/10.1074/jbc.273.41.26432
  • Poole, P.S., Schofield, N.A., Reid, C.J., Drew, E.M., Walshaw, D.L., Identification of chromosomal genes located downstream of dctD that affect the requirement for calcium and the lipopolysaccharide layer of Rhizobium leguminosarum (1994) Microbiology, 140, pp. 2797-2809
  • García de los Santos, A., Brom, S., Characterization of two plasmidborne lps beta loci of Rhizobium etli required for lipopolysaccharide synthesis and for optimal interaction with plants (1997) Mol Plant Microbe Interact, 10, pp. 891-902. , http://dx.doi.org/10.1094/MPMI.1997.10.7.891
  • González, V., Santamaria, R.I., Bustos, P., Hernandez-Gonzalez, I., Medrano-Soto, A., Moreno-Hagelsieb, G., Janga, S.C., Davila, G., The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons (2006) Proc Natl Acad Sci U S A, 103, pp. 3834-3839. , http://dx.doi.org/10.1073/pnas.0508502103
  • O'Neill, M.A., Darvill, A.G., Albersheim, P., The degree of esterification and points of substitution by O-acetyl and O-(3-hydroxybutanoyl) groups in the acidic extracellular polysaccharides secreted by Rhizobium leguminosarum biovars viciae, trifolii, and phaseoli are not related to host range (1991) J Biol Chem, 266, pp. 9549-9555
  • Noel, K.D., Forsberg, L.S., Carlson, R.W., Varying the abundance of O antigen in Rhizobium etli and its effect on symbiosis with Phaseolus vulgaris (2000) J Bacteriol, 182, pp. 5317-5324. , http://dx.doi.org/10.1128/JB.182.19.5317-5324.2000
  • Forsberg, L.S., Noel, K.D., Box, J., Carlson, R.W., Genetic locus and structural characterization of the biochemical defect in the O-antigenic polysaccharide of the symbiotically deficient Rhizobium etli mutant, CE166. Replacement of N-acetylquinovosamine with its hexosyl-4-ulose precursor (2003) J Biol Chem, 278, pp. 51347-51359
  • Janczarek, M., Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia (2011) Int J Mol Sci, 12, pp. 7898-7933. , http://dx.doi.org/10.3390/ijms12117898
  • Laus MaK, J.W., A fixer's dress code: surface polysaccharides in host-plant-specificity in the root nodule symbiosis (2004) Trends Glycosci Glycotechnol, 16, pp. 281-290. , http://dx.doi.org/10.4052/tigg.16.281
  • Ausmees, N., Jacobsson, K., Lindberg, M., A unipolarly located, cellsurface-associated agglutinin, RapA, belongs to a family of Rhizobiumadhering proteins (Rap) in Rhizobium leguminosarum bv. trifolii (2001) Microbiology, 147, pp. 549-559
  • Laus, M.C., Logman, T.J., Lamers, G.E., Van Brussel, A.A., Carlson, R.W., Kijne, J.W., A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin (2006) Mol Microbiol, 59, pp. 1704-1713. , http://dx.doi.org/10.1111/j.1365-2958.2006.05057.x
  • Lau, P.C., Lindhout, T., Beveridge, T.J., Dutcher, J.R., Lam, J.S., Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms (2009) J Bacteriol, 191, pp. 6618-6631. , http://dx.doi.org/10.1128/JB.00698-09
  • Lee, Y.W., Jeong, S.Y., In, Y.H., Kim, K.Y., So, J.S., Chang, W.S., Lack of O-polysaccharide enhances biofilm formation by Bradyrhizobium japonicum (2010) Lett Appl Microbiol, 50, pp. 452-456. , http://dx.doi.org/10.1111/j.1472-765X.2010.02813.x
  • Abarca-Grau, A.M., Burbank, L.P., de Paz, H.D., Crespo-Rivas, J.C., Marco-Noales, E., Lopez, M.M., Vinardell, J.M., Penyalver, R., Role for Rhizobium rhizogenes K84 cell envelope polysaccharides in surface interactions (2012) Appl Environ Microbiol, 78, pp. 1644-1651. , http://dx.doi.org/10.1128/AEM.07117-11
  • Campbell, G.R., Reuhs, B.L., Walker, G.C., Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core (2002) Proc Natl Acad SciUSA, 99, pp. 3938-3943. , http://dx.doi.org/10.1073/pnas.062425699
  • Smit, G., Kijne, J.W., Lugtenberg, B.J., Correlation between extracellular fibrils and attachment of Rhizobium leguminosarum to pea root hair tips (1986) J Bacteriol, 168, pp. 821-827
  • Laus, M.C., van Brussel, A.A., Kijne, J.W., Role of cellulose fibrils and exopolysaccharides of Rhizobium leguminosarum in attachment to and infection of Vicia sativa root hairs (2005) Mol Plant Microbe Interact, 18, pp. 533-538. , http://dx.doi.org/10.1094/MPMI-18-0533
  • Johnston, A.W., Beringer, J.E., Identification of the Rhizobium strains in pea root nodules using genetic markers (1975) J Gen Microbiol, 87, pp. 343-350. , http://dx.doi.org/10.1099/00221287-87-2-343
  • Downie, J.A., Ma, Q.S., Knight, C.D., Hombrecher, G., Johnston, A.W., Cloning of the symbiotic region of Rhizobium leguminosarum: the nodulation genes are between the nitrogenase genes and a nifA-like gene (1983) EMBO J, 2, pp. 947-952
  • Staskawicz, B., Dahlbeck, D., Keen, N., Napoli, C., Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea (1987) J Bacteriol, 169, pp. 5789-5794

Citas:

---------- APA ----------
Russo, D.M., Abdian, P.L., Posadas, D.M., Williams, A., Vozza, N., Giordano, W., Kannenberg, E.,..., Zorreguietaa, A. (2015) . Lipopolysaccharide O-chain core region required for cellular cohesion and compaction of In Vitro and root biofilms developed by Rhizobium leguminosarum. Applied and Environmental Microbiology, 81(3), 1013-1023.
http://dx.doi.org/10.1128/AEM.03175-14
---------- CHICAGO ----------
Russo, D.M., Abdian, P.L., Posadas, D.M., Williams, A., Vozza, N., Giordano, W., et al. "Lipopolysaccharide O-chain core region required for cellular cohesion and compaction of In Vitro and root biofilms developed by Rhizobium leguminosarum" . Applied and Environmental Microbiology 81, no. 3 (2015) : 1013-1023.
http://dx.doi.org/10.1128/AEM.03175-14
---------- MLA ----------
Russo, D.M., Abdian, P.L., Posadas, D.M., Williams, A., Vozza, N., Giordano, W., et al. "Lipopolysaccharide O-chain core region required for cellular cohesion and compaction of In Vitro and root biofilms developed by Rhizobium leguminosarum" . Applied and Environmental Microbiology, vol. 81, no. 3, 2015, pp. 1013-1023.
http://dx.doi.org/10.1128/AEM.03175-14
---------- VANCOUVER ----------
Russo, D.M., Abdian, P.L., Posadas, D.M., Williams, A., Vozza, N., Giordano, W., et al. Lipopolysaccharide O-chain core region required for cellular cohesion and compaction of In Vitro and root biofilms developed by Rhizobium leguminosarum. Appl. Environ. Microbiol. 2015;81(3):1013-1023.
http://dx.doi.org/10.1128/AEM.03175-14