Artículo

Dieterle, M.E.; Bowman, C.; Batthyany, C.; Lanzarotti, E.; Turjanski, A.; Hatfull, G.; Piuri, M. "Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis" (2014) Applied and Environmental Microbiology. 80(22):7107-7121
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Bacteriophage J-1 was isolated in 1965 from an abnormal fermentation of Yakult using Lactobacillus casei strain Shirota, and a related phage, PL-1, was subsequently recovered from a strain resistant to J-1. Complete genome sequencing shows that J-1 and PL-1 are almost identical, but PL-1 has a deletion of 1.9 kbp relative to J-1, resulting in the loss of four predicted gene products involved in immunity regulation. The structural proteins were identified by mass spectrometry analysis. Similarly to phage A2, two capsid proteins are generated by a translational frameshift and undergo proteolytic processing. The structure of gene product 16 (gp16), a putative tail protein, was modeled based on the crystal structure of baseplate distal tail proteins (Dit) that form the baseplate hub in other Siphoviridae. However, two regions of the C terminus of gp16 could not be modeled using this template. The first region accounts for the differences between J-1 and PL-1 gp16 and showed sequence similarity to carbohydratebinding modules (CBMs). J-1 and PL-1 GFP-gp16 fusions bind specifically to Lactobacillus casei/paracasei cells, and the addition of L-rhamnose inhibits binding. J-1 gp16 exhibited a higher affinity than PL-1 gp16 for cell walls of L. casei ATCC 27139 in phage adsorption inhibition assays, in agreement with differential adsorption kinetics observed for both phages in this strain. The data presented here provide insights into how Lactobacillus phages interact with their hosts at the first steps of infection. © 2014, American Society for Microbiology.

Registro:

Documento: Artículo
Título:Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis
Autor:Dieterle, M.E.; Bowman, C.; Batthyany, C.; Lanzarotti, E.; Turjanski, A.; Hatfull, G.; Piuri, M.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Iquibicen-Conicet, Buenos Aires, Argentina
Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA, United States
Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Montevideo, Uruguay
Palabras clave:Bacteriophages; Bins; Genes; Mass spectrometry; Proteins; Carbohydrate-binding modules; Differential adsorption; Lactobacillus casei; Mass spectrometry analysis; Proteolytic processing; Sequence similarity; Structural proteins; Translational frameshift; Crystal structure; bacteriophage; bacterium; chemical binding; fermentation; genomics; immunity; inhibition; mass spectrometry; protein; Lactobacillus casei; Rhodococcus rhodochrous; virus protein; amino acid sequence; bacteriophage; chemistry; comparative study; genetics; genomics; Lactobacillus casei; metabolism; molecular genetics; nucleotide sequence; physiology; sequence alignment; Siphoviridae; virology; virus genome; Amino Acid Sequence; Bacteriophages; Base Sequence; Genome, Viral; Genomics; Lactobacillus casei; Molecular Sequence Data; Sequence Alignment; Siphoviridae; Viral Proteins
Año:2014
Volumen:80
Número:22
Página de inicio:7107
Página de fin:7121
DOI: http://dx.doi.org/10.1128/AEM.02771-14
Título revista:Applied and Environmental Microbiology
Título revista abreviado:Appl. Environ. Microbiol.
ISSN:00992240
CODEN:AEMID
CAS:Viral Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00992240_v80_n22_p7107_Dieterle

Referencias:

  • Garneau, J.E., Moineau, S., Bacteriophages of lactic acid bacteria and their impact on milk fermentations (2011) Microb. Cell Fact., 10, p. S20. , http://dx.doi.org/10.1186/1475-2859-10-S1-S20
  • Brussow, H., Phages of dairy bacteria (2001) Annu. Rev. Microbiol., 55, pp. 283-303. , http://dx.doi.org/10.1146/annurev.micro.55.1.283
  • del Rio, B., Binetti, A.G., Martin, M.C., Fernandez, M., Magadan, A.H., Alvarez, M.A., Multiplex PCR for the detection and identification of dairy bacteriophages in milk (2007) Food Microbiol., 24, pp. 75-81. , http://dx.doi.org/10.1016/j.fm.2006.03.001
  • Madera, C., Monjardin, C., Suarez, J.E., Milk contamination and resistance to processing conditions determine the fate of Lactococcus lactis bacteriophages in dairies (2004) Appl. Environ. Microbiol., 70, pp. 7365-7371. , http://dx.doi.org/10.1128/AEM.70.12.7365-7371.2004
  • Suarez, V.B., Quiberoni, A., Binetti, A.G., Reinheimer, J.A., Thermophilic lactic acid bacteria phages isolated from Argentinian dairy industries (2002) J. Food Prot., 65, pp. 1597-1604
  • Verreault, D., Gendron, L., Rousseau, G.M., Veillette, M., Masse, D., Lindsley, W.G., Moineau, S., Duchaine, C., Detection of airborne lactococcal bacteriophages in cheese manufacturing plants (2011) Appl. Environ. Microbiol., 77, pp. 491-497. , http://dx.doi.org/10.1128/AEM.01391-10
  • Ebrecht, A.C., Guglielmotti, D.M., Tremmel, G., Reinheimer, J.A., Suarez, V.B., Temperate and virulent Lactobacillus delbrueckii bacteriophages: comparison of their thermal and chemical resistance Food Microbiol, 27, pp. 515-520. , http://dx.doi.org/10.1016/j.fm.2009.12.012
  • Briggiler Marco, M., De Antoni, G.L., Reinheimer, J.A., Quiberoni, A., Thermal, chemical, and photocatalytic inactivation of Lactobacillus plantarum bacteriophages (2009) J. Food Prot., 72, pp. 1012-1019
  • Suarez, V.B., Reinheimer, J.A., Effectiveness of thermal treatments and biocides in the inactivation of Argentinian Lactococcus lactis phages (2002) J. Food Prot., 65, pp. 1756-1759
  • Lunde, M., Aastveit, A.H., Blatny, J.M., Nes, I.F., Effects of diverse environmental conditions on {phi}LC3 prophage stability in Lactococcus lactis (2005) Appl. Environ. Microbiol., 71, pp. 721-727. , http://dx.doi.org/10.1128/AEM.71.2.721-727.2005
  • Madera, C., Garcia, P., Rodriguez, A., Suarez, J.E., Martinez, B., Prophage induction in Lactococcus lactis by the bacteriocin Lactococcin 972 (2009) Int. J. Food Microbiol., 129, pp. 99-102. , http://dx.doi.org/10.1016/j.ijfoodmicro.2008.11.004
  • Durmaz, E., Miller, M.J., Azcarate-Peril, M.A., Toon, S.P., Klaenhammer, T.R., Genome sequence and characteristics of Lrm1, a prophage from industrial Lactobacillus rhamnosus strain M1 Appl. Environ. Microbiol, 74, pp. 4601-4609. , http://dx.doi.org/10.1128/AEM.00010-08
  • Raya, R.R., Hebert, E.M., Isolation of phage via induction of lysogens (2009) Methods Mol. Biol., 501, pp. 23-32. , http://dx.doi.org/10.1007/978-1-60327-164-6_3
  • Ventura, M., Canchaya, C., Bernini, V., Altermann, E., Barrangou, R., McGrath, S., Claesson, M.J., van Sinderen, D., Comparative genomics and transcriptional analysis of prophages identified in the genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei (2006) Appl. Environ. Microbiol., 72, pp. 3130-3146. , http://dx.doi.org/10.1128/AEM.72.5.3130-3146.2006
  • Barrangou, R., Horvath, P., CRISPR: new horizons in phage resistance and strain identification (2012) Annu. Rev. Food Sci. Technol., 3, pp. 143-162. , http://dx.doi.org/10.1146/annurev-food-022811-101134
  • Sturino, J.M., Klaenhammer, T.R., Engineered bacteriophage-defence systems in bioprocessing (2006) Nat. Rev. Microbiol., 4, pp. 395-404. , http://dx.doi.org/10.1038/nrmicro1393
  • Marranzino, G., Villena, J., Salva, S., Alvarez, S., Stimulation of macrophages by immunobiotic Lactobacillus strains: influence beyond the intestinal tract (2012) Microbiol. Immunol., 56, pp. 771-781. , http://dx.doi.org/10.1111/j.1348-0421.2012.00495.x
  • Rochat, T., Bermudez-Humaran, L., Gratadoux, J.J., Fourage, C., Hoebler, C., Corthier, G., Langella, P., Anti-inflammatory effects of Lactobacillus casei BL23 producing or not a manganese-dependent catalase on DSSinduced colitis in mice (2007) Microb. Cell Fact., 6, p. 22. , http://dx.doi.org/10.1186/1475-2859-6-22
  • Greene, J.D., Klaenhammer, T.R., Factors involved in adherence of lactobacilli to human Caco-2 cells (1994) Appl. Environ. Microbiol., 60, pp. 4487-4494
  • Kawase, M., He, F., Kubota, A., Harata, G., Hiramatsu, M., Oral administration of lactobacilli from human intestinal tract protects mice against influenza virus infection (2010) Lett. Appl. Microbiol., 51, pp. 6-10. , http://dx.doi.org/10.1111/j.1472-765X.2010.02849.x
  • Galdeano, C.M., de Moreno de LeBlanc, A., Vinderola, G., Bonet, M.E., Perdigon, G., Proposed model: mechanisms of immunomodulation induced by probiotic bacteria (2007) Clin. Vaccine Immunol., 14, pp. 485-492. , http://dx.doi.org/10.1128/CVI.00406-06
  • Villion, M., Moineau, S., Bacteriophages of lactobacillus (2009) Front. Biosci., 14, pp. 1661-1683
  • Garcia, P., Ladero, V., Suarez, J.E., Analysis of the morphogenetic cluster and genome of the temperate Lactobacillus casei bacteriophage A2 (2003) Arch. Virol., 148, pp. 1051-1070. , http://dx.doi.org/10.1007/s00705-003-0008-x
  • Lo, T.C., Shih, T.C., Lin, C.F., Chen, H.W., Lin, T.H., Complete genomic sequence of the temperate bacteriophage PhiAT3 isolated from Lactobacillus casei ATCC 393 (2005) Virology, 339, pp. 42-55. , http://dx.doi.org/10.1016/j.virol.2005.05.022
  • Hino, M., Ikebe, N., Lactic acid bacteria employed for beverage production, II. Isolation and some properties of a bacteriophage isolated during the fermentation of lactic acid beverage (1965) J. Chem. Soc. Jpn., 39, pp. 472-476
  • Watanabe, K., Takesue, S., Jin-Nai, K., Yoshikawa, T., Bacteriophage active against the lactic acid beverage-producing bacterium Lactobacillus casei (1970) Appl. Microbiol., 20, pp. 409-415
  • Sechaud, L., Cluzel, P.J., Rousseau, M., Baumgartner, A., Accolas, J.P., Bacteriophages of lactobacilli (1988) Biochimie, 70, pp. 401-410. , http://dx.doi.org/10.1016/0300-9084(88)90214-3
  • Watanabe, K., Takesue, S., Ishibashi, K., Reversibility of the adsorption of bacteriophage PL-1 to the cell walls isolated from Lactobacillus casei (1977) J. Gen. Virol., 34, pp. 189-194. , http://dx.doi.org/10.1099/0022-1317-34-1-189
  • Watanabe, K., Ishibashi, K., Nakashima, Y., Sakurai, T., A phageresistant mutant of Lactobacillus casei which permits phage adsorption but not genome injection (1984) J. Gen. Virol., 65, pp. 981-986
  • Watanabe, K., Hayashida, M., Ishibashi, K., Nakashima, Y., An Nacetylmuramidase induced by PL-1 phage infection of Lactobacillus casei (1984) J. Gen. Microbiol., 130, pp. 275-277
  • Watanabe, K., Kakita, Y., Nakashima, Y., Miake, F., Calcium requirement for protoplast transfection mediated by polyethylene glycol of Lactobacillus casei by PL-1 phage DNA (1992) Biosci. Biotechnol. Biochem., 56, pp. 1859-1862. , http://dx.doi.org/10.1271/bbb.56.1859
  • Watanabe, K., Kakita, Y., Nakashima, Y., Miake, F., Involvement of host cell energy in the transfection of Lactobacillus casei protoplasts with phage PL-1 DNA (1995) Curr. Microbiol., 30, pp. 39-43. , http://dx.doi.org/10.1007/BF00294522
  • Watanabe, K., Kakita, Y., Nakashima, Y., Sasaki, T., Protoplast transfection of Lactobacillus casei by phage PL-1 DNA (1990) Agric. Biol. Chem., 54, pp. 937-941. , http://dx.doi.org/10.1271/bbb1961.54.937
  • Kakita, Y., Nakashima, Y., Ono, N., Miake, F., Watanabe, K., Effects of some calcium-related agents on the protoplast transfection of Lactobacillus casei with phage PL-1 DNA (1996) Curr. Microbiol., 33, pp. 359-363. , http://dx.doi.org/10.1007/s002849900128
  • Kakita, Y., Kashige, N., Murata, K., Kuroiwa, A., Funatsu, M., Watanabe, K., Inactivation of Lactobacillus bacteriophage PL-1 by microwave irradiation Microbiol. Immunol, 39, pp. 571-576. , http://dx.doi.org/10.1111/j.1348-0421.1995.tb02244.x
  • Kashige, N., Kakita, Y., Nakashima, Y., Miake, F., Watanabe, K., Mechanism of the photocatalytic inactivation of Lactobacillus casei phage PL-1 by Titania thin film (2001) Curr. Microbiol., 42, pp. 184-189. , http://dx.doi.org/10.1007/s002840010201
  • Capra, M.L., del, L., Quiberoni, A., Ackermann, H.W., Moineau, S., Reinheimer, J.A., Characterization of a new virulent phage (MLC-A) of Lactobacillus paracasei (2006) J. Dairy Sci., 89, pp. 2414-2423. , http://dx.doi.org/10.3168/jds.S0022-0302(06)72314-1
  • Kakita, Y., Kashige, N., Miake, F., Watanabe, K., Photocatalysisdependent inactivation of Lactobacillus phage PL-1 by a ceramics preparation (1997) Biosci. Biotechnol. Biochem., 61, pp. 1947-1948. , http://dx.doi.org/10.1271/bbb.61.1947
  • Watanabe, K., Takesue, S., Ishibashi, K., DNA of phage PL-1 active against Lactobacillus casei ATCC 27092 (1980) Agric. Biol. Chem., 44, pp. 453-455. , http://dx.doi.org/10.1271/bbb1961.44.453
  • Khosaka, T., Physicochemical properties of a virulent Lactobacillus phage containing DNA with cohesive ends (1977) J. Gen. Virol., 37, pp. 209-214. , http://dx.doi.org/10.1099/0022-1317-37-1-209
  • Kashige, N., Nakashima, Y., Miake, F., Watanabe, K., Cloning, sequence analysis, and expression of Lactobacillus casei phage PL-1 lysis genes (2000) Arch. Virol., 145, pp. 1521-1534. , http://dx.doi.org/10.1007/s007050070073
  • Dieterle, M.E., Jacobs-Sera, D., Russell, D., Hatfull, G., Piuri, M., Complete genome sequences of Lactobacillus phages J-1 and PL-1 (2014) Genome Announc, 2 (1). , http://dx.doi.org/10.1128/genomeA.00998-13
  • Cresawn, S.G., Bogel, M., Day, N., Jacobs-Sera, D., Hendrix, R.W., Hatfull, G.F., Phamerator: a bioinformatic tool for comparative bacteriophage genomics BMC Bioinformatics, 12, p. 395. , http://dx.doi.org/10.1186/1471-2105-12-395
  • Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Punta, M., Pfam: the protein families database (2014) Nucleic Acids Res., 42, pp. D222-D230. , http://dx.doi.org/10.1093/nar/gkt1223
  • Soding, J., Biegert, A., Lupas, A.N., The HHpred interactive server for protein homology detection and structure prediction (2005) Nucleic Acids Res., 33, pp. W244-W248. , http://dx.doi.org/10.1093/nar/gki408
  • Webb, B., Sali, A., Protein structure modeling with MODELLER (2014) Methods Mol. Biol., 1137, pp. 1-15. , http://dx.doi.org/10.1007/978-1-4939-0366-5_1
  • Palomino, M.M., Allievi, M.C., Grundling, A., Sanchez-Rivas, C., Ruzal, S.M., Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid Microbiology, 159, pp. 2416-2426. , http://dx.doi.org/10.1099/mic.0.070607-0
  • Piuri, M., Jacobs, W.R., Jr., Hatfull, G.F., Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis (2009) PLoS One, 4. , http://dx.doi.org/10.1371/journal.pone.0004870
  • Habann, M., Leiman, P.G., Vandersteegen, K., Van den Bossche, A., Lavigne, R., Shneider, M.M., Bielmann, R., Klumpp, J., Listeria phage A511, a model for the contractile tail machineries of SPO1-related bacteriophages Mol. Microbiol, 92, pp. 84-99. , http://dx.doi.org/10.1111/mmi.12539
  • Nakashima, Y., Ikeda, H., Kakita, Y., Miake, F., Watanabe, K., Restriction map of the genomic DNA of Lactobacillus casei bacteriophage PL-1 and nucleotide sequence of its cohesive single-stranded ends (1994) J. Gen. Virol., 75, pp. 2537-2541
  • Ladero, V., Garcia, P., Bascaran, V., Herrero, M., Alvarez, M.A., Suarez, J.E., Identification of the repressor-encoding gene of the Lactobacillus bacteriophage A2 J. Bacteriol., 180, pp. 3474-3476
  • Garcia, P., Ladero, V., Alonso, J.C., Suarez, J.E., Cooperative interaction of CI protein regulates lysogeny of Lactobacillus casei by bacteriophage A2 (1999) J. Virol., 73, pp. 3920-3929
  • Garcia, P., Rodriguez, I., Suarez, J.E., A -1 ribosomal frameshift in the transcript that encodes the major head protein of bacteriophage A2 mediates biosynthesis of a second essential component of the capsid (2004) J. Bacteriol., 186, pp. 1714-1719. , http://dx.doi.org/10.1128/JB.186.6.1714-1719.2004
  • Moscoso, M., Suarez, J.E., Characterization of the DNA replication module of bacteriophage A2 and use of its origin of replication as a defense against infection during milk fermentation by Lactobacillus casei (2000) Virology, 273, pp. 101-111. , http://dx.doi.org/10.1006/viro.2000.0382
  • Garcia, P., Alonso, J.C., Suarez, J.E., Molecular analysis of the cos region of the Lactobacillus casei bacteriophage A2. Gene product 3, gp3, specifically binds to its downstream cos region (1997) Mol. Microbiol., 23, pp. 505-514
  • Benevides, J.M., Bondre, P., Duda, R.L., Hendrix, R.W., Thomas, G.J., Jr., Domain structures and roles in bacteriophage HK97 capsid assembly and maturation (2004) Biochemistry, 43, pp. 5428-5436. , http://dx.doi.org/10.1021/bi0302494
  • Rodriguez, I., Garcia, P., Suarez, J.E., A second case of -1 ribosomal frameshifting affecting a major virion protein of the Lactobacillus bacteriophage A2 (2005) J. Bacteriol., 187, pp. 8201-8204. , http://dx.doi.org/10.1128/JB.187.23.8201-8204.2005
  • Xu, J., Hendrix, R.W., Duda, R.L., Conserved translational frameshift in dsDNA bacteriophage tail assembly genes (2004) Mol. Cell, 16, pp. 11-21. , http://dx.doi.org/10.1016/j.molcel.2004.09.006
  • Veesler, D., Robin, G., Lichiere, J., Auzat, I., Tavares, P., Bron, P., Campanacci, V., Cambillau, C., Crystal structure of bacteriophage SPP1 distal tail protein (gp19.1): a baseplate hub paradigm in gram-positive infecting phages (2010) J. Biol. Chem., 285, pp. 36666-36673. , http://dx.doi.org/10.1074/jbc.M110.157529
  • Bebeacua, C., Bron, P., Lai, L., Vegge, C.S., Brondsted, L., Spinelli, S., Campanacci, V., Cambillau, C., Structure and molecular assignment of lactococcal phage TP901-1 baseplate (2010) J. Biol. Chem., 285, pp. 39079-39086. , http://dx.doi.org/10.1074/jbc.M110.175646
  • Veesler, D., Spinelli, S., Mahony, J., Lichiere, J., Blangy, S., Bricogne, G., Legrand, P., Cambillau, C., Structure of the phage TP901-1 1.8MDabaseplate suggests an alternative host adhesion mechanism (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. 8954-8958. , http://dx.doi.org/10.1073/pnas.1200966109
  • Veesler, D., Cambillau, C., A common evolutionary origin for tailedbacteriophage functional modules and bacterial machineries (2011) Microbiol. Mol. Biol. Rev., 75, pp. 423-433. , http://dx.doi.org/10.1128/MMBR.00014-11
  • Shoseyov, O., Shani, Z., Levy, I., Carbohydrate binding modules: biochemical properties and novel applications (2006) Microbiol. Mol. Biol. Rev., 70, pp. 283-295. , http://dx.doi.org/10.1128/MMBR.00028-05
  • Duplessis, M., Moineau, S., Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages (2001) Mol. Microbiol., 41, pp. 325-336. , http://dx.doi.org/10.1046/j.1365-2958.2001.02521.x
  • Dupont, K., Vogensen, F.K., Neve, H., Bresciani, J., Josephsen, J., Identification of the receptor-binding protein in 936-species lactococcal bacteriophages (2004) Appl. Environ. Microbiol., 70, pp. 5818-5824. , http://dx.doi.org/10.1128/AEM.70.10.5818-5824.2004
  • Duplessis, M., Levesque, C.M., Moineau, S., Characterization of Streptococcus thermophilus host range phage mutants (2006) Appl. Environ. Microbiol., 72, pp. 3036-3041. , http://dx.doi.org/10.1128/AEM.72.4.3036-3041.2006
  • Yokokura, T., Phage receptor material in Lactobacillus casei cell wall. I. Effect of L-rhamnose on phage adsorption to the cell wall (1971) Jpn. J. Microbiol., 15, pp. 457-463
  • Yokokura, T., Phage receptor material in Lactobacillus casei (1977) J. Gen. Microbiol., 100, pp. 139-145. , http://dx.doi.org/10.1099/00221287-100-1-139
  • Ishibashi, K., Takesue, S., Watanabe, K., Oishi, K., Use of lectins to characterize the receptor sites for bacteriophage PL-1 of Lactobacillus casei (1982) J. Gen. Microbiol., 128, pp. 2251-2259
  • Shimizu-Kadota, M., Sakurai, T., Prophage curing in Lactobacillus casei by isolation of a thermoinducible mutant (1982) Appl. Environ. Microbiol., 43, pp. 1284-1287
  • Dupuy, B., Govind, R., Antunes, A., Matamouros, S., Clostridium difficile toxin synthesis is negatively regulated by TcdC (2008) J. Med. Microbiol., 57, pp. 685-689. , http://dx.doi.org/10.1099/jmm.0.47775-0
  • Carter, G.P., Douce, G.R., Govind, R., Howarth, P.M., Mackin, K.E., Spencer, J., Buckley, A.M., Lyras, D., The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile (2011) PLoS Pathog., 7. , http://dx.doi.org/10.1371/journal.ppat.1002317
  • Matamouros, S., England, P., Dupuy, B., Clostridium difficile toxin expression is inhibited by the novel regulator TcdC (2007) Mol. Microbiol., 64, pp. 1274-1288. , http://dx.doi.org/10.1111/j.1365-2958.2007.05739.x
  • Marchler-Bauer, A., Lu, S., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., Bryant, S.H., CDD: a conserved domain database for the functional annotation of proteins (2011) Nucleic Acids Res., 39, pp. D225-D229. , http://dx.doi.org/10.1093/nar/gkq1189
  • Hochschild, A., Lewis, M., The bacteriophage lambda CI protein finds an asymmetric solution (2009) Curr. Opin. Struct. Biol., 19, pp. 79-86. , http://dx.doi.org/10.1016/j.sbi.2008.12.008
  • Hall, B.M., Roberts, S.A., Heroux, A., Cordes, M.H., Two structures of a lambda Cro variant highlight dimer flexibility but disfavor major dimer distortions upon specific binding of cognate DNA (2008) J. Mol. Biol., 375, pp. 802-811. , http://dx.doi.org/10.1016/j.jmb.2007.10.082
  • Iyer, L.M., Koonin, E.V., Aravind, L., Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52 (2002) BMC Genomics, 3, p. 8. , http://dx.doi.org/10.1186/1471-2164-3-8
  • Arcus, V., OB-fold domains: a snapshot of the evolution of sequence, structure and function (2002) Curr. Opin. Struct. Biol., 12, pp. 794-801. , http://dx.doi.org/10.1016/S0959-440X(02)00392-5
  • Schnos, M., Zahn, K., Blattner, F.R., Inman, R.B., DNA looping induced by bacteriophage lambda O protein: implications for formation of higher order structures at the lambda origin of replication (1989) Virology, 168, pp. 370-377. , http://dx.doi.org/10.1016/0042-6822(89)90278-X
  • Tuohimaa, A., Riipinen, K.A., Brandt, K., Alatossava, T., The genome of the virulent phage Lc-Nu of probiotic Lactobacillus rhamnosus, and comparative genomics with Lactobacillus casei phages (2006) Arch. Virol., 151, pp. 947-965. , http://dx.doi.org/10.1007/s00705-005-0672-0
  • Stephens, K.M., McMacken, R., Functional properties of replication fork assemblies established by the bacteriophage lambda O and P replication proteins (1997) J. Biol. Chem., 272, pp. 28800-28813. , http://dx.doi.org/10.1074/jbc.272.45.28800
  • Mahdi, A.A., Sharples, G.J., Mandal, T.N., Lloyd, R.G., Holliday junction resolvases encoded by homologous rusA genes in Escherichia coli K-12 and phage 82 (1996) J. Mol. Biol., 257, pp. 561-573. , http://dx.doi.org/10.1006/jmbi.1996.0185
  • Lleo, M.M., Fontana, R., Solioz, M., Identification of a gene (arpU) controlling muramidase-2 export in Enterococcus hirae (1995) J. Bacteriol., 177, pp. 5912-5917
  • Stetter, K.O., Evidence for frequent lysogeny in lactobacilli: temperate bacteriophages within the subgenus Streptobacterium (1977) J. Virol., 24, pp. 685-689
  • Sciara, G., Bebeacua, C., Bron, P., Tremblay, D., Ortiz-Lombardia, M., Lichiere, J., van Heel, M., Cambillau, C., Structure of lactococcal phage p2 baseplate and its mechanism of activation (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 6852-6857. , http://dx.doi.org/10.1073/pnas.1000232107
  • Flayhan, A., Vellieux, F.M., Lurz, R., Maury, O., Contreras-Martel, C., Girard, E., Boulanger, P., Breyton, C., Crystal structure of pb9, the distal tail protein of bacteriophage T5: a conserved structural motif among all siphophages (2014) J. Virol., 88, pp. 820-828. , http://dx.doi.org/10.1128/JVI.02135-13
  • Yasuda, E., Tateno, H., Hirabayashi, J., Iino, T., Sako, T., Lectin microarray reveals binding profiles of Lactobacillus casei strains in a comprehensive analysis of bacterial cell wall polysaccharides (2011) Appl. Environ. Microbiol., 77, pp. 4539-4546. , http://dx.doi.org/10.1128/AEM.00240-11
  • Goulet, A., Lai-Kee-Him, J., Veesler, D., Auzat, I., Robin, G., Shepherd, D.A., Ashcroft, A.E., Bron, P., The opening of the SPP1 bacteriophage tail, a prevalent mechanism in Gram-positive-infecting siphophages J. Biol. Chem, 286, pp. 25397-25405. , http://dx.doi.org/10.1074/jbc.M111.243360
  • Stockdale, S.R., Mahony, J., Courtin, P., Chapot-Chartier, M.P., van Pijkeren, J.P., Britton, R.A., Neve, H., van Sinderen, D., The lactococcal phages Tuc2009 and TP901-1 incorporate two alternate forms of their tail fiber into their virions for infection specialization (2013) J. Biol. Chem., 288, pp. 5581-5590. , http://dx.doi.org/10.1074/jbc.M112.444901
  • Spinelli, S., Veesler, D., Bebeacua, C., Cambillau, C., Structures and host-adhesion mechanisms of lactococcal siphophages (2014) Front. Microbiol., 5, p. 3. , http://dx.doi.org/10.3389/fmicb.2014.00003
  • Krumsiek, J., Arnold, R., Rattei, T., Gepard: a rapid and sensitive tool for creating dot plots on genome scale (2007) Bioinformatics, 23, pp. 1026-1028. , http://dx.doi.org/10.1093/bioinformatics/btm039

Citas:

---------- APA ----------
Dieterle, M.E., Bowman, C., Batthyany, C., Lanzarotti, E., Turjanski, A., Hatfull, G. & Piuri, M. (2014) . Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis. Applied and Environmental Microbiology, 80(22), 7107-7121.
http://dx.doi.org/10.1128/AEM.02771-14
---------- CHICAGO ----------
Dieterle, M.E., Bowman, C., Batthyany, C., Lanzarotti, E., Turjanski, A., Hatfull, G., et al. "Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis" . Applied and Environmental Microbiology 80, no. 22 (2014) : 7107-7121.
http://dx.doi.org/10.1128/AEM.02771-14
---------- MLA ----------
Dieterle, M.E., Bowman, C., Batthyany, C., Lanzarotti, E., Turjanski, A., Hatfull, G., et al. "Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis" . Applied and Environmental Microbiology, vol. 80, no. 22, 2014, pp. 7107-7121.
http://dx.doi.org/10.1128/AEM.02771-14
---------- VANCOUVER ----------
Dieterle, M.E., Bowman, C., Batthyany, C., Lanzarotti, E., Turjanski, A., Hatfull, G., et al. Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis. Appl. Environ. Microbiol. 2014;80(22):7107-7121.
http://dx.doi.org/10.1128/AEM.02771-14