Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Many classical multivariate statistical process monitoring (MSPM) techniques assume normal distribution of the data and independence of the samples. Very often, these assumptions do not hold for real industrial chemical processes, where multiple plant operating modes lead to multiple nominal operation regions. MSPM techniques that do not take account of this fact show increased false alarm and missing alarm rates. In this work, a simple fault detection tool based on a robust clustering technique is implemented to detect abnormal situations in an industrial installation with multiple operation modes. The tool is applied to three case studies: (i) a two-dimensional toy example, (ii) a realistic simulation usually used as a benchmark example, known as the Tennessee-Eastman Process, and (iii) real data from a methanol plant. The clustering technique on which the tool relies assumes that the observations come from multiple populations with a common covariance matrix (i.e., the same underlying physical relations). The clustering technique is also capable of coping with a certain percentage of outliers, thus avoiding the need of extensive preprocessing of the data. Moreover, improvements in detection capacity are found when comparing the results to those obtained with standard methodologies. Hence, the feasibility of implementing fault detection tools based on this technique in the field of chemical industrial processes is discussed. © 2009 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes
Autor:Maestri, M.; Farall, A.; Groisman, P.; Cassanello, M.; Horowitz, G.
Filiación:PINMATE, Dep. de Industrias, FCEyN, C1428BGA Buenos Aires, Argentina
Instituto de Cálculo, FCEyN, Universidad de Buenos Aires, Argentina
Centro de Tecnología Argentina, YPF, Argentina
Palabras clave:Fault detection; Multiple operating modes; Multivariate statistical process monitoring; Alarm rate; Clustering techniques; False alarms; Industrial installations; Industrial processs; Methanol plants; Multiple operations; Multivariate statistical process monitoring; Nominal operations; Operating modes; Realistic simulation; Robust clustering; Steady-state operation; Tennessee Eastman process; Chemical detection; Cluster analysis; Covariance matrix; Inspection equipment; Methanol; Multivariant analysis; Normal distribution; Process monitoring; Statistical process control; Fault detection
Año:2010
Volumen:34
Número:2
Página de inicio:223
Página de fin:231
DOI: http://dx.doi.org/10.1016/j.compchemeng.2009.05.012
Título revista:Computers and Chemical Engineering
Título revista abreviado:Comput. Chem. Eng.
ISSN:00981354
CODEN:CCEND
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00981354_v34_n2_p223_Maestri

Referencias:

  • Bersimis, S., Psarakis, S., Panaretos, J., Multivariate statistical process control charts: An overview (2007) Quality and Reliability Engineering International, 23 (5), pp. 517-543
  • Chen, J., Liu, J., Mixture principal components analysis models for process monitoring (1999) Industrial & Engineering Chemistry Research, 38, pp. 1478-1488
  • Choi, S.W., Yoo, C.K., Lee, I.B., Overall statistical monitoring of static and dynamic patterns (2003) Industrial & Engineering Chemistry Research, 42 (1), pp. 108-117
  • Downs, J.J., Vogel, E.F., A plant-wide industrial process control problem (1993) Comparative Chemical Engineering, 17, pp. 245-255
  • Gallegos, M.T., Ritter, G., A robust method for cluster analysis (2005) The Annals of Statistics, 33, pp. 347-380
  • Ge, Z., Song, Z., Online monitoring of nonlinear multiple mode processes based on adaptive local model approach (2008) Control Engineering Practice, 16, pp. 1427-1437
  • Hwang, D.-H., Han, Ch., Real-time monitoring for a process with multiple operating modes (1999) Control Engineering Practice, 7, pp. 891-902
  • Lane, S., Martin, E.B., Kooijmans, R., Morris, A.J., Performance monitoring of a multi-product semi-batch process (2001) Journal of Process Control, 11, pp. 1-11
  • Ricker, N.L., Decentralized control of the Tennessee Eastman Challenge Process (1996) Journal of Process Control, 6 (4), pp. 205-221
  • Ricker, N.L., (2008) Tennessee Eastman Challenge Archive, , http://depts.washington.edu/control/LARRY/TE/download.html, Available for download at
  • Russell, E.L., Chiang, L.H., Braatz, R.D., Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis (2000) Chemometrics and Intelligent Laboratory Systems, 51, pp. 81-93
  • Srinivassan, R., Wang, C., Ho, W.K., Lim, K.W., Dynamic principal components analysis based methodology for clustering process states in agile chemical plants (2004) Industrial & Engineering Chemistry Research, 43, pp. 2123-2139
  • Tibshirani, R., Walther, G., Hastie, T., Estimating the number of clusters in a data set via the gap statistic (2000) Journal of the Royal Statistical Society. Series B (Statistical Methodology), 63 (2), pp. 411-423. , (2001)
  • Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N., Yin, K., A review of process fault detection and diagnosis. Part III. Process history based methods (2003) Computers and Chemical Engineering, 27, pp. 327-346
  • Yoo, C.K., Vanrolleghem, P.A., Lee, I.B., Nonlinear modelling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plants (2003) Journal of Biotechnology, 105, pp. 135-163
  • Zhao, S.J., Zhang, J., Xu, Y.M., Monitoring of processes with multiple operating modes through multiple principle component analysis models (2004) Industrial & Engineering Chemistry Research, 43, pp. 7025-7035
  • Zhao, S.J., Zhang, J., Xu, Y.M., Performance monitoring of processes with multiple operating modes through multiple PLS models (2006) Journal of Process Control, 16, pp. 763-772

Citas:

---------- APA ----------
Maestri, M., Farall, A., Groisman, P., Cassanello, M. & Horowitz, G. (2010) . A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes. Computers and Chemical Engineering, 34(2), 223-231.
http://dx.doi.org/10.1016/j.compchemeng.2009.05.012
---------- CHICAGO ----------
Maestri, M., Farall, A., Groisman, P., Cassanello, M., Horowitz, G. "A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes" . Computers and Chemical Engineering 34, no. 2 (2010) : 223-231.
http://dx.doi.org/10.1016/j.compchemeng.2009.05.012
---------- MLA ----------
Maestri, M., Farall, A., Groisman, P., Cassanello, M., Horowitz, G. "A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes" . Computers and Chemical Engineering, vol. 34, no. 2, 2010, pp. 223-231.
http://dx.doi.org/10.1016/j.compchemeng.2009.05.012
---------- VANCOUVER ----------
Maestri, M., Farall, A., Groisman, P., Cassanello, M., Horowitz, G. A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes. Comput. Chem. Eng. 2010;34(2):223-231.
http://dx.doi.org/10.1016/j.compchemeng.2009.05.012