Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

There is continuing interest in the description of the solubility of nonpolar gases in water over a wide range of temperatures. On one hand, the solubility data are used in many fields of science and technology; and on the other hand, simulation and theoretical calculations require experimental data to test their results and predictions. For these reasons it is important to have a means of calculating from the experimental solubility data the Gibbs energy of dissolution of gases (Δdis G 2 ∞ ) and Henry's constant (k H) over all the temperature range of existence of liquid water. Under ambient conditions it is relatively easy to relate Δdis G 2 ∞ and, hence, k H to the solubility data of nonpolar gases. However, this simple procedure becomes increasingly complicated as the temperature approaches the critical temperature of the solvent and it is necessary to make important corrections to obtain the thermodynamic quantities for the dissolution process. This difficulty can be resolved with a procedure that employs a perturbation method applied to a simple model solvent to guide the correct determination of k H and Δdis G 2 ∞ . We describe in this work an iterative calculation procedure whose correctness was validated with a thermodynamic relationship that uses only experimental data, hence it is model-free. Unfortunately this relationship can be applied only to a few systems due to its data requirements. The iterative procedure described in this work can be extended to higher pressures, p≅50 MPa above the solvent's vapor pressure, and also to gases dissolved in nonaqueous solvents. © 2008 Springer Science+Business Media, LLC.

Registro:

Documento: Artículo
Título:A model-guided determination of Δdis G2 ∞ for slightly soluble gases in water using solubility data: From the solvent's freezing point to its critical point
Autor:Alvarez, J.; Fernández-Prini, R.
Filiación:Unidad Actividad Química, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
INQUIMAE, Ftd. Cs. Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Aqueous solutions; Solubility of gases; Thermodynamic properties
Año:2008
Volumen:37
Número:3
Página de inicio:433
Página de fin:448
DOI: http://dx.doi.org/10.1007/s10953-007-9235-1
Título revista:Journal of Solution Chemistry
Título revista abreviado:J. Solut. Chem.
ISSN:00959782
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00959782_v37_n3_p433_Alvarez

Referencias:

  • Chandler, D., Interfaces and the driving force of hydrophobic assembly (2005) Nature, 437, pp. 640-647
  • Plyasunov, A.V., O'Connell, J.P., Wood, R.H., Infinite dilution partial molar properties of aqueous solutions of nonelectrolytes (2000) I. Equations for Partial Molar Volumes at Infinite Dilution and Standard Thermodynamic Functions of Hydration of Volatile Nonelectrolytes over Wide Ranges of Conditions. Geochim. Cosmochim. Acta, 4, pp. 495-512
  • Plyasunov, A.V., Shock, E.L., Prediction of the Krichevskii parameter for volatile nonelectrolytes in water (2004) Fluid Phase Equilib., 222-223, pp. 19-24
  • Konrad, O., Lankau, U., The solubility of methane in water: The significance of the methane-water interaction potential (2005) J. Phys. Chem. B, 109, pp. 23596-23604
  • Solomonov, B.N., Sedov, I.A., Quantitative description of the hydrophobic effect: The enthalpic contribution (2006) J. Phys. Chem. B, 110, pp. 9298-9303
  • Chuev, G.N., Sokolov, V.F., Hydration of hydrophobic solutes by the fundamental measure approach (2006) J. Phys. Chem. B, 110, pp. 18496-18503
  • Fernández-Prini, R., Crovetto, R., Japas, M.L., Laría, D., Thermodynamics of dissolution of simple gases in water (1985) Acc. Chem. Res., 18, pp. 207-212
  • Fernández-Prini, R., Alvarez, J., Harvey, A., Henry's constants and vapor-liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures (2003) J. Phys. Chem. Ref. Data, 32, pp. 903-916
  • Fernández-Prini, R., Alvarez, J.L., Harvey, A.H., Palmer, D.A., Fernández-Prini, R., Harvey, A.H., Aqueous solubility of volatile nonelectrolytes (2004) The Physical and Chemical Properties of Aqueous Systems at Elevated Temperatures and Pressures: Water, Steam and Hydrothermal Solutions, pp. 73-98. , Elsevier Amsterdam
  • Pierotti, R.A., The solubility of gases in liquids: J (1963) Phys. Chem., 67, pp. 1840-1845
  • Pierotti, R.A., Aqueous solutions of nonpolar gases (1965) J. Phys. Chem., 69, pp. 281-288
  • Re, M., Laria, D., Fernández-Prini, R., Solvent structural contributions to the dissolution process of an apolar solute in water (1996) Chem. Phys. Lett., 250, pp. 25-30
  • Lum, K., Chandler, D., Weeks, J.D., Hydrophobicity at small and large length sales (1999) J. Phys. Chem. B, 103, pp. 4570-4577
  • Peng, D.Y., Robinson, D.B., A new two-constant equation of state (1976) Ind. Eng. Chem. Fundam., 15, pp. 59-64
  • Peng, D.Y., Robinson, D.B., Newman, S., Two-and three-phase equilibrium calculations for coal gasification and related processes (1980) Thermodynamics of Aqueous Systems with Industrial Applications ACS Symposium Series 133, pp. 393-414. , American Chemistry Society Washington
  • Fernández-Prini, R., Japas, M.L., Chemistry in near-critical fluids (1994) Rev. Chem. Soc., 23, pp. 155-163
  • Levelt Sengers, J.M.H., Harvey, A.H., Crovetto, R., Gallagher, J.S., Standard states (1992) Reference States and Finite-concentration Effects in Near-critical Mixtures with Applications to Aqueous Solutions. Fluid Phase Equilib., 81, pp. 85-107
  • Plyasunov, A.V., Shock, E.L., O'Connell, J.P., Corresponding-states relationships for estimating partial molar volumes of nonelectrolytes at infinite dilution in water over extended temperature and pressure ranges (2006) Fluid Phase Equilib., 247, pp. 18-34
  • Reiss, H., Frisch, H.L., Lebowitz, J.L., Statistical mechanics of rigid spheres (1959) J. Chem. Phys., 31, pp. 369-380
  • Reiss, H., Frisch, H.L., Helfand, E., Lebowitz, J.L., Aspects of the statistical thermodynamics of real fluids (1960) J. Chem. Phys., 32, pp. 119-124
  • Crovetto, R., Fernández-Prini, R., Japas, M.L., On the contribution of the cavity formation or hard sphere term to the solubility of simple gases in water (1982) J. Phys. Chem., 86, pp. 4094-4095
  • Fernández-Prini, R., Corti, H.R., Japas, M.L., (1992) High-Temperature Aqueous Solutions: Thermodynamic Properties, , CRC Press Boca Raton
  • Boublik, R., Nezbeda, I., Hlavaty, K., (1980) Statistical Thermodynamics of Simple Liquids and Their Mixtures, , Elsevier New York
  • Alvarez, J., Fernández-Prini, R., A semiempirical procedure to describe the thermodynamics of dissolution of nonpolar gases in water (1991) Fluid Phase Equilib., 66, pp. 309-326
  • Kirkwood, J.G., Buff, F., The statistical mechanics theory of solutions (1951) I. J. Chem. Phys., 19, pp. 774-777
  • Pratt, L.R., Chandler, D., Theory of the hydrophobic effect (1977) J. Chem. Phys., 67, pp. 3683-3704
  • Frisch, H.L., Katz, J.L., Praestgaard, E., Lebowitz, J.L., High-temperature equation of state-argon (1966) J. Phys. Chem., 70, pp. 2016-2020
  • Alvarez, J., Crovetto, R., Fernández-Prini, R., The intermolecular energy of interaction of water with nonpolar gases (1983) Z. Phys. Chem. (N.F.), 136, pp. 135-143
  • Neff, R.O., McQuarrie, D.A., A statistical mechanical theory of solubility (1973) J. Phys. Chem., 77, pp. 413-418
  • Alvarez, J., Corti, H.R., Fernández-Prini, R., Japas, M.L., Distribution of solutes between coexisting steam and water (1994) Geochim. Cosmochim. Acta, 58, pp. 2789-2798
  • Japas, M.L., Levelt Sengers, J.M.H., Gas solubility and Henry's law near the solvent's critical point (1989) AIChE. J., 35, pp. 705-713
  • Takenouchi, S., Kennedy, G.C., The binary system H2O-CO2 at high temperature and pressure (1964) Am. J. Sci., 263, pp. 1055-1074
  • Crovetto, R., Wood, R.H., Solubility of CO2 in water and density of aqueous CO 2 near the solvent critical temperature (1992) Fluid Phase Equilib., 74, pp. 271-288
  • Jung, J., Knacke, O., Neuschütz, D., Solubility of carbon monoxide and hydrogen at temperatures up to 300∈°C (1971) Chem. Ing. Tech., 43, pp. 112-116
  • Sultanov, R.G., Skripka, V.G., Namiot, A.Y., The solubility of methane in water at high temperatures and pressures (1972) Gazov. Prom., 17, pp. 6-7

Citas:

---------- APA ----------
Alvarez, J. & Fernández-Prini, R. (2008) . A model-guided determination of Δdis G2 ∞ for slightly soluble gases in water using solubility data: From the solvent's freezing point to its critical point. Journal of Solution Chemistry, 37(3), 433-448.
http://dx.doi.org/10.1007/s10953-007-9235-1
---------- CHICAGO ----------
Alvarez, J., Fernández-Prini, R. "A model-guided determination of Δdis G2 ∞ for slightly soluble gases in water using solubility data: From the solvent's freezing point to its critical point" . Journal of Solution Chemistry 37, no. 3 (2008) : 433-448.
http://dx.doi.org/10.1007/s10953-007-9235-1
---------- MLA ----------
Alvarez, J., Fernández-Prini, R. "A model-guided determination of Δdis G2 ∞ for slightly soluble gases in water using solubility data: From the solvent's freezing point to its critical point" . Journal of Solution Chemistry, vol. 37, no. 3, 2008, pp. 433-448.
http://dx.doi.org/10.1007/s10953-007-9235-1
---------- VANCOUVER ----------
Alvarez, J., Fernández-Prini, R. A model-guided determination of Δdis G2 ∞ for slightly soluble gases in water using solubility data: From the solvent's freezing point to its critical point. J. Solut. Chem. 2008;37(3):433-448.
http://dx.doi.org/10.1007/s10953-007-9235-1