Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Subterranean rodents are considered major soil engineers, as they can locally modify soil properties by their burrowing activities. In this study, the effect of a subterranean rodent of the genus Ctenomys on soil properties and root endophytic fungal propagules in a shrub desert of northwest Argentina was examined. Our main goal was to include among root endophytic fungi not only arbuscular mycorrhiza but also the dark septate endophytes. We compared the abundance of fungal propagules as well as several microbiological and physicochemical parameters between soils from burrows and those from the surrounding landscape. Our results show that food haulage, the deposition of excretions, and soil mixing by rodents’ burrowing promote soil patchiness by (1) the enrichment in both types of root endophytic fungal propagules; (2) the increase in organic matter and nutrients; and (3) changes in soil edaphic properties including moisture, field capacity, and texture. These patches may play a critical role as a source of soil heterogeneity in desert ecosystems, where burrows constructed in interpatches of bare soil can act, once abandoned, as “islands of fertility,” promoting the establishment of plants in an otherwise hostile environment. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.

Registro:

Documento: Artículo
Título:Subterranean Desert Rodents (Genus Ctenomys) Create Soil Patches Enriched in Root Endophytic Fungal Propagules
Autor:Miranda, V.; Rothen, C.; Yela, N.; Aranda-Rickert, A.; Barros, J.; Calcagno, J.; Fracchia, S.
Filiación:Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-CONICET, Provincia de La Rioja, UNLAR, SEGEMAR, UNCa), Entre Ríos y Mendoza s/n, 5301, Anillaco La Rioja, Argentina
Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico (CEBBAD), Departamento de Ciencias Naturales y Antropológicas, CONICET, Buenos Aires, Argentina
Palabras clave:Arbuscular mycorrhiza; Biopedturbation; Dark septate endophytes; Fungal dispersion; Monte Desert; animal; Argentina; chemistry; desert climate; ecosystem; endophyte; environment; fungus; growth, development and aging; microbiology; mycorrhiza; physiology; plant root; rodent; soil; symbiosis; Animals; Argentina; Desert Climate; Ecosystem; Endophytes; Environment; Fungi; Mycorrhizae; Plant Roots; Rodentia; Soil; Soil Microbiology; Symbiosis
Año:2019
Volumen:77
Número:2
Página de inicio:451
Página de fin:459
DOI: http://dx.doi.org/10.1007/s00248-018-1227-8
Título revista:Microbial Ecology
Título revista abreviado:Microb. Ecol.
ISSN:00953628
CODEN:MCBEB
CAS:Soil
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00953628_v77_n2_p451_Miranda

Referencias:

  • Darwin, C., (1881) The formation of vegetable mould through the action of worms, with observations on their habits, , J. Murray, London
  • Bardgett, R., (2010) The Biology of Soil: A Community and Ecosystem Approach
  • Mandyam, K., Jumpponen, A., Seeking the elusive function of the root-colonising dark septate endophytic fungi (2005) Stud Mycol, 53, pp. 173-189
  • Smith, S.E., Read, D.J., (2008) Mycorrhizal symbiosis 3rd edn, p. 787. , Academic Press, San Diego
  • Jumpponen, A., Dark septate endophytes—are they mycorrhizal? (2001) Mycorrhiza, 11, pp. 207-211
  • Wu, Y., Liu, T., He, X., Mycorrhizal and dark septate endophytic fungi under the canopies of desert plants in Mu Us Sandy Land of China (2009) Front Agric China, 3, pp. 164-170
  • Mandyam, K., Loughin, T., Jumpponen, A., Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass prairie (2010) Mycologia, 102, pp. 813-821. , (,),.,:. doi:, https://doi.org/
  • Peterson, R.L., Wagg, C., Pautler, M., Associations between microfungal endophytes and roots: do structural features indicate function? (2008) Botany, 456, pp. 445-456
  • Usuki, F., Narisawa, K., A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage (2007) Mycologia, 99, pp. 175-184. , PID: 17682770
  • Schlesinger, W.H., Evidence from chronosequence studies for a low carbon-storage potential of soils (1990) Nature, 348, pp. 232-234
  • Aguiar, M.R., Sala, O.E., Patch structure, dynamics and implications for the functioning of arid ecosystems (1999) Trends Ecol Evol, 14, pp. 273-277
  • Tewksbury, J.J., Lloyd, J.D., Positive interactions under nurse-plants: spatial scale, stress gradients and benefactor size (2001) Oecologia, 127, pp. 425-434
  • Boulton, A.M., Amberman, K.D., How ant nests increase soil biota richness and abundance: a field experiment (2006) Biodivers Conserv, 15, pp. 69-82
  • Jones, C.G., Lawton, J.H., Shachak, M., Organisms as ecosystem engineers BT—ecosystem management: Selected readings (1996) Ecosystem Management, pp. 130-147. , Samson FB, Knopf FL, Springer, New York
  • Grant, W.E., French, N.R., Folse, L.J., Effects of pocket gopher mounds on plant production in shortgrass prairie ecosystems (1980) Southwest Nat, 25, pp. 215-224
  • De Bruyn, L., Conacher, A.J., The role of termites and ants in soil modification—a review (1990) Soil Res, 28, pp. 55-93
  • Whitford, W.G., Kay, F.R., Biopedturbation by mammals in deserts: a review (1999) J Arid Environ, 41, pp. 203-230
  • Mun, H.-T., Whitford, W.G., Changes in mass and chemistry of plant roots during long-term decomposition on a Chihuahuan Desert watershed (1997) Biol Fertil Soils, 26, pp. 16-22
  • Whitford, W.G., DiMarco, R., Variability in soils and vegetation associated with harvester ant (Pogonomyrmex rugosus) nests on a Chihuahuan Desert watershed (1995) Biol Fertil Soils, 20, pp. 169-173
  • Dhillion, S.S., Environmental heterogeneity, animal disturbances, microsite characteristics, and seedling establishment in a Quercus havardii community (1999) Restor Ecol, 7, pp. 399-406
  • Chew, R., Whitford, W., A long-term positive effect of kangaroo rats (Dipodomys spectabilis) on creosotebushes (Larrea tridentata) (1992) J Arid Environ, 22, pp. 375-386
  • Stolp, H., (1988) Microbial ecology: organisms, habitats, activities, Cambridge, , Cambridge University Press, Cambridge
  • Desmet, P., Cowling, R., Patch creation by fossorial rodents: a key process in the revegetation of phytotoxic arid soils (1999) J Arid Environ, 43, pp. 35-45
  • Kerley, G.I.H., Whitford, W.G., Kay, F.R., Effects of pocket gophers on desert soils and vegetation (2004) J Arid Environ, 58, pp. 155-166
  • Malizia, A.I., Kittlein, M.J., Busch, C., Influence of the subterranean herbivorous rodent Ctenomys talarum on vegetation and soil (2000) Z Saugetierkd, 65, pp. 172-182
  • Lara, N., Sassi, P., Borghi, C.E., Effect of herbivory and disturbances by tuco-tucos (Ctenomys mendocinus) on a plant community in the southern Puna Desert (2007) Arct Antarct Alp Res, 39, pp. 110-116
  • Zhang, Y., Zhang, Z., Liu, J., Burrowing rodents as ecosystem engineers: the ecology and management of plateau zokors Myospalax fontanierii in alpine meadow ecosystems on the Tibetan Plateau (2003) Mammal Rev, 33, pp. 284-294
  • Kuznetsova, T.A., Kam, M., Khokhlova, I.S., Kostina, N.V., Dobrovolskaya, T.G., Umarov, M.M., Degen, A.A., Krasnov, B.R., Desert gerbils affect bacterial composition of soil (2013) Microb Ecol, 66, pp. 940-949
  • Allen, M.F., MacMahon, J.A., Direct VA mycorrhizal inoculation of colonizing plants by pocket gophers (Thomomys talpoides) on Mount St. Helens (1988) Mycologia, 82, pp. 754-755
  • Titus, J.H., Nowak, R.S., Smith, S.D., Soil resource heterogeneity in the Mojave Desert (2002) J Arid Environ, 52, pp. 269-292
  • Fracchia, S., Krapovickas, L., Aranda-Rickert, A., Valentinuzzi, V.S., Dispersal of arbuscular mycorrhizal fungi and dark septate endophytes by Ctenomys cf. knighti (Rodentia) in the northern Monte Desert of Argentina (2011) J Arid Environ, 75, pp. 1016-1023
  • Abraham, E., del Valle, H.F., Roig, F., Torres, L., Ares, J.O., Coronato, F., Godagnone, R., Overview of the geography of the Monte Desert biome (Argentina) (2009) J Arid Environ, 73, pp. 144-153
  • Aranda-Rickert, A., Diez, P., Marazzi, B., Extrafloral nectar fuels ant life in deserts (2014) AoB Plants, 6, p. plu068
  • Bisigato, A.J., Villagra, P.E., Ares, J.O., Rossi, B.E., Vegetation heterogeneity in Monte Desert ecosystems: a multi-scale approach linking patterns and processes (2009) J Arid Environ, 73, pp. 182-191
  • Cook, J., Lessa, E., Are rates of diversification in subterranean south american tuco-tucos (genus ctenomys, rodentia: octodontidae) unusually high? (1998) Evolution, 52, pp. 1521-1527. , PID: 28565377
  • Morgan, C.C., Verzi, D.H., Morphological diversity of the humerus of the South American subterranean rodent Ctenomys (Rodentia, Ctenomyidae) (2006) J Mammal, 87, pp. 1252-1260
  • Pearson, O.P., Taxonomy and natural history of some fossorial rodents of Patagonia, southern Argentina (1984) J Zool, 202, pp. 225-237
  • Reig, O.A., Ecological notes on the fossorial octodont rodent Spalacopus Cyanus (Molina) (1970) J Mammal, 51, pp. 592-601
  • Valentinuzzi, V.S., Oda, G.A., Araujo, J.F., Ralph, M.R., Circadian pattern of wheel-running activity of a South American subterranean rodent (Ctenomys cf knightii) (2009) Chronobiol Int, 26, pp. 14-27
  • Tachinardi, P., Bicudo, J.E.W., Oda, G.A., Valentinuzzi, V.S., Rhythmic 24 h variation of core body temperature and locomotor activity in a subterranean rodent (Ctenomys aff. knighti)—the tuco-tuco (2014) PLoS One, 9, pp. 1-8
  • Mares, M.A., Hulse, A.C., Patterns of some vertebrate communities in creosote bush deserts (1977) Creosote Bush Biol Chem Larrea New World Deserts, Dowden, Hutchinson Ross, Stroudsburg, Pennsylvania, pp. 209-226
  • Borruel, N., Campos, C.M., Giannoni, S.M., Borghi, C.E., Effect of herbivorous rodents (cavies and tuco-tucos) on a shrub community in the Monte Desert, Argentina (1998) J Arid Environ, 39, pp. 33-37
  • Altuna, C.A., Francescoli, G., Tassino, B., Ecoetología y conservación de mamíferos subterráneos de distribución restringida: el caso de Ctenomys pearsoni (1999) Etologia, 7, pp. 47-54
  • Sieverding, E., Friedrichsen, J., Suden, W., (1991) Vesicular-Arbuscular Mycorrhiza Management in Tropical Agrosystems, , Dtsch Gesellschaft fuer Tech Zusammenarbeit
  • Barrow, J.R., Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands (2003) Mycorrhiza, 13, pp. 239-247
  • McGonigle, T.P., Miller, M.H., Evans, D.G., A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi (1990) New Phytol, 115, pp. 495-501
  • Fisher, R.A., Yates, F., (1963) Statistical tables for biological, agricultural and medical research, edited by RA Fisher and F. Yates, , Oliver and Boyd, Edinburgh
  • An, Z.Q., Hendrix, J.W., Hershman, D.E., Henson, G.T., Evaluation of the “most probable number”(MPN) and wet-sieving methods for determining soil-borne populations of endogonaceous mycorrhizal fungi (1990) Mycol, 82, pp. 576-581
  • Anderson, J., (1982) Soil Respiration. In: Methods of Soil Analysis. Soil Science Society of America, Madison, pp. 831-871. , Wisconsin, USA
  • Sparks, D.L., Page, A.L., Helmke, P.A., Methods of soil analysis: Chemical methods (1996) Chemical Methods, 3Rd Ed, p. 1390. , American Society of Agronomy, Madison: ASA and SSSA
  • Bray, R.H., Kurtz, L.T., Determination of total, organic, and available forms of soil phosphorus in soil (1945) Soil Sci, 59, pp. 39-46
  • Daniel, P.E., Marbán, L.G., Adaptación de un método espectrofotométrico reductivo para la determinación de nitratos en estractos de suelos (1989) Boletín la Asoc Argentina la Cienc del Suelo, 583, pp. 3-8
  • Colman, E.A., A laboratory procedure for determining the field capacity of soils (1946) Soil Sci, 67, pp. 277-283
  • (2017) R: A Language and Environment for Statistical Computing
  • Evelin, H., Kapoor, R., Giri, B., Arbuscular mycorrhizal fungi in alleviation of salt stress: a review (2009) Ann Bot, 104, pp. 1263-1280. , PID: 19815570
  • Rose, S.L., Youngberg, C.T., Tripartite associations in snowbrush (Ceanothus velutinus): effect of vesicular–arbuscular mycorrhizae on growth, nodulation, and nitrogen fixation (1981) Can J Bot, 59, pp. 34-39
  • Trappe, J.M., Mycorrhizae and productivity of arid and semiarid rangelands (1981) Advances in Food-Producing Systems for Arid and Semiarid Lands, Part A, pp. 581-599. , Elsevier
  • Mejstřík, V.K., Cudlin, P., Mycorrhiza in some plant desert species in Algeria (1983) Tree Root Systems and Their Mycorrhizas. Springer, Pp, pp. 363-366
  • Bloss, H.E., Walker, C., Some endogonaceous mycorrhizal fungi of the Santa Catalina mountains in Arizona (1987) Mycologia, 79, pp. 649-654
  • Carrillo-Garcia, A., León De La Luz, J.L., Bashan, Y., Bethlenfalvay, G.J., Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran Desert (1999) Restor Ecol, 7, pp. 321-335
  • Bethlenfalvay, G.J., Dakessian, S., Pacovsky, R.S., Mycorrhizae in a southern California desert: ecological implications (1984) Can J Bot, 62, pp. 519-524
  • Cui, M., Nobel, P.S., Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi (1992) New Phytol, 122, pp. 643-649
  • Redman, R.S., Sheehan, K.B., Stout, R.G., Rodriguez, R.J., Henson, J.M., Thermotolerance generated by plant/fungal symbiosis (2002) Science, 298, p. 1581
  • Newsham, K.K., A meta-analysis of plant responses to dark septate root endophytes (2011) New Phytol, 190, pp. 783-793
  • Rodriguez, R.J., Redman, R.S., Henson, J.M., The role of fungal symbioses in the adaptation of plants to high stress environments (2004) Mitig Adapt Strateg Glob Chang, 9, pp. 261-272
  • Knapp, D.G., Kovács, G.M., Zajta, E., Groenewald, J.Z., Crous, P.W., Dark septate endophytic pleosporalean genera from semiarid areas (2015) Persoonia, 35, pp. 87-100
  • McGee, P.A., Variation in propagule numbers of vesicular-arbuscular mycorrhizal fungi in a semi-arid soil (1989) Mycol Res, 92, pp. 28-33
  • Barea, J., Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem (1996) Appl Environ Microbiol, 62, pp. 842-847
  • Sigüenza, C., Espejel, I., Allen, E.B., Seasonality of mycorrhizae in coastal sand dunes of Baja California (1996) Mycorrhiza, 6, pp. 151-157
  • He, X., Mouratov, S., Steinberger, Y., Temporal and spatial dynamics of vesicular-arbuscular mycorrhizal fungi under the canopy of Zygophyllum dumosum Boiss. in the Negev Desert (2002) J Arid Environ, 52, pp. 379-387
  • Ayarbe, J.P., Kieft, T.L., Mammal mounds stimulate microbial activity in a semiarid shrubland (2000) Ecology, 81, pp. 1150-1154
  • Kuznetsova, T.A., Roshchina, E.S., Kostina, N.V., Umarov, M.M., Soil biological activity in the Chernye Zemli, Kalmykia, inhabited by gerbils Meriones tamariscinus and M. meridianus (2006) Biol Bull, 33, pp. 92-98
  • Nadler, A., Steinberger, Y., Trends in structure, plant growth, and microorganism interrelations in the soil (1993) Soil Sci, 155, pp. 114-122
  • Wetzel, P.R., Van Der Valk, A.G., Newman, S., Heterogeneity of phosphorus distribution in a patterned landscape, the Florida Everglades (2009) Plant Ecol, 200, pp. 83-90
  • Schlesinger, W.H., Bernhardt, E., Biogeochemistry: An Analasis of Global Change
  • Holford, I.C.R., Mattingly, G.E.G., Phosphate adsorption and availability plant of phosphate (1976) Plant Soil, 44, pp. 377-389
  • Cameron, S.L., (1998) Colonization of Populus tremuloides seedlings by the fungus Phialocephala fortinii in the presence of the ectomycorrhal fungus Thelephora terrestris, , The University of Guelph, Guelph
  • Johnson, D.L., Biomantle evolution and the redistribution of earth materials and artifacts (1990) Soil Sci, 149, pp. 84-102
  • Camargo-Ricalde, S.L., Dhillion, S.S., Endemic Mimosa species can serve as mycorrhizal “resource islands” within semiarid communities of the Tehuacán-Cuicatlán Valley, Mexico (2003) Mycorrhiza, 13, pp. 129-136

Citas:

---------- APA ----------
Miranda, V., Rothen, C., Yela, N., Aranda-Rickert, A., Barros, J., Calcagno, J. & Fracchia, S. (2019) . Subterranean Desert Rodents (Genus Ctenomys) Create Soil Patches Enriched in Root Endophytic Fungal Propagules. Microbial Ecology, 77(2), 451-459.
http://dx.doi.org/10.1007/s00248-018-1227-8
---------- CHICAGO ----------
Miranda, V., Rothen, C., Yela, N., Aranda-Rickert, A., Barros, J., Calcagno, J., et al. "Subterranean Desert Rodents (Genus Ctenomys) Create Soil Patches Enriched in Root Endophytic Fungal Propagules" . Microbial Ecology 77, no. 2 (2019) : 451-459.
http://dx.doi.org/10.1007/s00248-018-1227-8
---------- MLA ----------
Miranda, V., Rothen, C., Yela, N., Aranda-Rickert, A., Barros, J., Calcagno, J., et al. "Subterranean Desert Rodents (Genus Ctenomys) Create Soil Patches Enriched in Root Endophytic Fungal Propagules" . Microbial Ecology, vol. 77, no. 2, 2019, pp. 451-459.
http://dx.doi.org/10.1007/s00248-018-1227-8
---------- VANCOUVER ----------
Miranda, V., Rothen, C., Yela, N., Aranda-Rickert, A., Barros, J., Calcagno, J., et al. Subterranean Desert Rodents (Genus Ctenomys) Create Soil Patches Enriched in Root Endophytic Fungal Propagules. Microb. Ecol. 2019;77(2):451-459.
http://dx.doi.org/10.1007/s00248-018-1227-8