Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Understanding the evolution of a Bauplan starts with discriminating phylogenetic signal from adaptation and the latter from exaptation in the observed biodiversity. Whether traits have predated, accompanied, or followed evolution of particular functions is the basic inference to establish the type of explanations required to determine morphological evolution. To accomplish this, we focus in a particular group of vertebrates, the anurans. Frogs and toads have a unique Bauplan among vertebrates, with a set of postcranial features that have been considered adaptations to jumping locomotion since their evolutionary origin. This interpretation is frequently stated but rarely tested in scientific literature. We test this assumption reconstructing the locomotor capabilities of the earliest known salientian, Triadobatrachus massinoti. This extinct taxon exhibits a mosaic of features that have traditionally been considered as representing an intermediate stage in the evolution of the anuran Bauplan, some of which were also linked to jumping skills. We considered T. massinoti in an explicit evolutionary framework by means of multivariate analyses and comparative phylogenetic methods. We used length measurements of major limb bones of 188 extant limbed amphibians (frogs and salamanders) and lizards as a morphological proxy of observed locomotor behavior. Our findings show that limb data correlate with locomotion, regardless of phylogenetic relatedness, and indicate that salamander-like lateral undulatory movements were the main mode of locomotion of T. massinoti. These results contrast with recent hypotheses and indicate that derived postcranial features that T. massinoti shared with anurans might have been later co-opted as exaptations in jumping frogs. © 2016 The Paleontological Society. All rights reserved.

Registro:

Documento: Artículo
Título:Walk before you jump: New insights on early frog locomotion from the oldest known salientian
Autor:Lires, A.I.; Soto, I.M.; Gómez, R.O.
Filiación:IEGEBA (CONICET/UBA), Departamento de Ecología Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires, C1428EGA, Argentina
CONICET-Laboratorio de Paleontología Evolutiva de Vertebrados, Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires, C1428EGA, Argentina
Palabras clave:adaptation; amphibian; biodiversity; evolutionary biology; extinction; locomotion; morphology; movement; phylogenetics; relatedness; Amphibia; Anura; Salamandroidea; Squamata; Triadobatrachus; Vertebrata
Año:2016
Volumen:42
Número:4
Página de inicio:612
Página de fin:623
DOI: http://dx.doi.org/10.1017/pab.2016.11
Título revista:Paleobiology
Título revista abreviado:Paleobiology
ISSN:00948373
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00948373_v42_n4_p612_Lires

Referencias:

  • (2015) Information on Amphibian Biology and Conservation, , http://amphibiaweb.org, accessed 23 September 2015
  • Ashley-Ross, M.A., Lundin, R., Johnson, K.L., Kinematics of level terrestrial and underwater walking in the California newt, Taricha torosa (2009) Journal of Experimental Zoology, 311, pp. 240-257
  • Báez, A.M., Basso, N.G., The earliest known frogs of the Jurassic of South America: Review and cladistic appraisal of their relationships (1996) Münchner Geowissenschaftliche Abhandlungen, 30, pp. 131-158
  • Barr, W.A., Scott, R.S., Phylogenetic comparative methods complement discriminant function analysis in ecomorphology (2014) American Journal of Physical Anthropology, 153, pp. 663-674
  • Davis, E.B., McHorse, B.K., A method for improved identification of postcrania from mammalian fossil assemblages: Multivariate discriminant function analysis of camelid astragali (2013) Palaeontologia Electronica, 16, p. 27A. , http://palaeo-electronica.org/content/2013/539-discriminant-id-of-postcrania
  • Dong, L., Roek, Z., Wang, Y., Jones, M.E.H., Anurans from the Lower Cretaceous Jehol Group of western Liaoning, China (2013) PLoS ONE, 8, p. e69723
  • Duellman, W.E., Reproductive strategies of frogs (1992) Scientific American, 267 (1), pp. 80-87
  • Emerson, S.B., Burrowing in frogs (1976) Journal of Morphology, 149, pp. 437-458
  • Emerson, S.B., Allometry and jumping in frogs: Helping the twain to meet (1978) Evolution, 32, pp. 551-564
  • Emerson, S.B., The ilio-sacral articulation in frogs: Form and function (1979) Biological Journal of the Linnean Society, 11, pp. 153-168
  • Emerson, S.B., Convergence and morphological constraint in frogs: Variation in postcranial morphology (1988) Fieldiana Zoology, 43, pp. 1-19
  • Emerson, S.B., De Jongh, H.J., Muscle activity at the iliosacral articulation of frogs (1980) Journal of Morphology, 166, pp. 129-144
  • Emerson, S.B., Travis, J., Koehl, M.A., Functional complexes and additivity in performance: A test case with "flying" frogs (1990) Evolution, 44, pp. 2153-2157
  • Enriquez-Urzelai, U., Montori, A., Llorente, G.A., Kaliontzopoulou, A., Locomotor mode and the evolution of the hindlimb in western Mediterranean anurans (2015) Evolutionary Biology, 42, pp. 199-209
  • Essner, R., Jr., Suffian, D.J., Bishop, P.J., Reilly, S.M., Landing in basal frogs: Evidence of saltational patterns in the evolution of anuran locomotion (2010) Naturwissenschaften, 97, pp. 935-939
  • Estes, R., Reig, O.A., The early fossil record of frogs: A review of the evidence (1973) Evolutionary Biology of the Anurans: Contemporary Research on Major Problems, pp. 11-63. , in J. L. Vial, ed. University of Missouri Press, Columbia
  • Evans, S.E., Borsuk-Biaynicka, M., A stem-group frog from the Early Triassic of Poland (1998) Acta Palaeontologica Polonica, 43, pp. 573-580
  • Fabrezi, M., Manzano, A.S., Abdala, V., Lobo, F., Anuran locomotion: Ontogeny and morphological variation of a distinctive set of muscles (2014) Evolutionary Biology, 41, pp. 308-326
  • Frost, D.R., (2015) Amphibian Species of the World: An Online Reference Version 6. 0., , http://research.amnh.org/vz/herpetology/amphibia/index.html, accessed 8 June 2015
  • Gans, C., Parsons, T.S., On the origin of the jumping mechanisms in frogs (1966) Evolution, 20, pp. 92-99
  • Gao, K.Q., Chen, Q., A new frog (Amphibia: Anura) from the Lower Cretaceous of western Liaoning, China (2004) Cretaceous Research, 25, pp. 761-769
  • Gao, K.Q., Wang, Y., Mesozoic anurans from Liaoning Province, China, and phylogenetic relationships of archaeobatrachian anuran clades (2001) Journal of Vertebrate Paleontology, 21, pp. 460-476
  • Gardner, J.D., Roek, Z., Pikryl, T., Eaton, J.G., Blob, R.W., Sankey, J.T., Comparative morphology of the ilium of anurans and urodeles (Lissamphibia) and a re-assessment of the anuran affinities of Nezpercius dodsoni (Blob et al (2010) 2001). Journal of Vertebrate Paleontology, 30, pp. 1684-1696
  • Gomes, F.R., Rezende, E.L., Grizante, M.B., Navas, C.A., The evolution of jumping performance in anurans: Morphological correlates and ecological implications (2009) Journal of Evolutionary Biology, 22, pp. 1088-1097
  • Grafen, A., The phylogenetic regression (1989) Philosophical Transactions of the Royal Society Series B, 326, pp. 119-157
  • Grey, L.A., O'Reilly, J.C., Nishikawa, K.C., Evolution of forelimb movement patterns for prey manipulation in anurans (1997) Journal of Experimental Zoology, 277, pp. 417-424
  • Griffiths, I., Status of Protobatrachus massinoti (1956) Nature 177: 342-343
  • Griffiths, I., The phylogeny of the Salientia (1963) Biological Reviews, 38, pp. 241-292
  • Handrigan, G.R., Wassersug, R.J., The anuran Bauplan: A review of the adaptive, developmental, and genetic underpinnings of frog and tadpole morphology (2007) Biological Reviews, 82, pp. 1-25
  • Hecht, M.K., A reevaluation of the early history of the frogs: Part i (1962) Systematic Biology, 11, pp. 39-44
  • Jenkins, F.A., Shubin, N.H., Prosalirus bitis and the anuran caudopelvic mechanism (1998) Journal of Vertebrate Paleontology, 18, pp. 495-510
  • Jorgensen, M.E., Reilly, S.M., Phylogenetic patterns of skeletal morphometrics and pelvic traits in relation to locomotor mode in frogs (2013) Journal of Evolutionary Biology, 26, pp. 929-943
  • Jungers, W.L., Falsetti, A.B., Wall, C.E., Shape, relative size, and size-adjustments in morphometrics (1995) Yearbook of Physical Anthropology, 38, pp. 137-161
  • Karakasiliotis, K., Schilling, N., Cabelguen, J.M., Ijspeert, A.J., Where are we in understanding salamander locomotion: Biological and robotic perspectives on kinematics (2013) Biological Cybernetics, 107, pp. 529-544
  • Lachenbruch, P.A., Mickey, M.R., Estimation of error rates in discriminant analysis (1968) Technometrics, 10, pp. 1-11
  • Maddison, W.P., Maddison, D.R., (2011) Mesquite: A Modular System for Evolutionary Analysis, Version 2.75, , http://mesquiteproject.org
  • Maglia, A.M., Pugener, L.A., Mueller, J.M., Skeletal morphology and postmetamorphic ontogeny of Acris crepitans (Anura: Hylidae): A case of miniaturization in frogs (2007) Journal of Morphology, 268, pp. 194-223
  • Marjanovi, D., Witzmann, F., An extremely peramorphic newt (Urodela: Salamandridae: Pleurodelini) from the Latest Oligocene of Germany, and a new phylogenetic analysis of extant and extinct salamandrids (2015) PLoS ONE, 10, p. e0137068
  • Martins, E.P., Hansen, T.F., Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data (1997) American Naturalist, 149, pp. 646-667
  • Mosimann, J.E., James, F.C., New statistical methods for allometry with application to Florida red-winged blackbirds (1979) Evolution, 33, pp. 444-459
  • Nauwelaerts, S., Aerts, P., Two distinct gait types in swimming frogs (2002) Journal of Zoology, 258, pp. 183-188
  • Nauwelaerts, S., Aerts, P., Take-off and landing forces in jumping frogs (2006) Journal of Experimental Biology, 209, pp. 66-77
  • O'Reilly, J.C., Summers, A.P., Ritter, D.A., The evolution of the functional role of trunk muscles during locomotion in adult amphibians (2000) American Zoologist, 40, pp. 123-135
  • Piveteau, J., Une forme ancestrale des Amphibiens Anoures dans le Trias inférieur de Madagascar (1936) Comptes Rendus de L'Académie des Sciences, 102, pp. 1607-1608
  • Piveteau, J., Paléontologie de Madagascar. Un amphibien du Trias inférieur: Essai sur l'origine et l'évolution des amphibiens anoures (1937) Annales de Paléontologie., 26, pp. 135-177
  • Pikryl, T., Aerts, P., Havelková, P., Herrel, A., Roek, Z., Pelvic and thigh musculature in frogs (Anura) and origin of anuran jumping locomotion (2009) Journal of Anatomy, 214, pp. 100-139
  • Pugener, L.A., Maglia, A.M., Skeletal morphogenesis of the vertebral column of the miniature hylid frog Acris crepitans, with comments on anomalies (2009) Journal of Morphology, 270, pp. 52-69
  • Pyron, R.A., Wiens, J.J., A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians (2011) Molecular Phylogenetics and Evolution, 61, pp. 543-583
  • Pyron, R.A., Burbrink, F.T., Wiens, J.J., A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes (2013) BMC Evolutionary Biology, 13, p. 93
  • (2012) R: A Language and Environment for Statistical Computing, , http://www.R-project.org, R Development Core Team. R Foundation for Statistical Computing, Vienna, Austria
  • Rage, J.C., Roek, Z., Triadobatrachus revisited (1986) Studies in Herpetology, pp. 255-258. , in Z. Ro?ek, ed. Charles University Press, Prague
  • Rage, J.C., Roek, Z., Redescription of Triadobatrachus massinoti (Piveteau, 1936) an anuran amphibian from the early Triassic (1989) Palaeontographica A, 206, pp. 1-16
  • Reilly, S.M., Jorgensen, A.E., The evolution of jumping in frogs: Morphological evidence for the basal anuran locomotor condition and the radiation of locomotor systems in crown group anurans (2011) Journal of Morphology, 272, pp. 149-168
  • Roek, Z., Mesozoic anurans (2000) Amphibian Biology, pp. 1295-1331. , in H. Heatwole, and R. L. Carroll, eds. Surrey Beatty, Chipping Norton, Australia
  • Roek, Z., Rage, J.C., Proanuran stages (Triadobatrachus, Czatkobatrachus) (2000) Amphibian Biology, pp. 1283-1294. , in H. Heatwole, and R. L. Carroll, eds. Surrey Beatty, Chipping Norton, Australia
  • Roková, H., Roek, Z., Development of the pelvis and posterior part of the vertebral column in the Anura (2005) Journal of Anatomy, 206, pp. 17-35
  • Rohlf, F.J., Comparative methods for the analysis of continuous variables: Geometric interpretations (2001) Evolution, 55, pp. 2143-2160
  • Rohlf, F.J., (2004) NTSYSpc: Numerical Taxonomy and Multivariate Analysis System, Version 2 11
  • Exeter, S.N.Y., Shubin, N.H., Jenkins, F.A., Jr., An Early Jurassic jumping frog (1995) Nature, 377, pp. 49-52
  • Sigurdsen, T., Green, D.M., Bishop, P.J., Did Triadobatrachus Jump? Morphology and evolution of the anuran forelimb in relation to locomotion in early salientians (2012) Fieldiana Life and Earth Sciences, 5, pp. 77-89
  • (2007) STATISTICA (Data Analysis Software System), Version 8 0, , httm://www.statsoft.com
  • Symonds, M.R., Blomberg, S.P., A primer on phylogenetic generalised least squares (2014) Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology, pp. 105-130. , in L. Z. Garamszegi, ed. Springer, Berlin
  • Taigen, T.L., Emerson, S.B., Pough, F.H., Ecological correlates of anuran exercise physiology (1982) Oecologia, 52, pp. 49-56
  • Toledo, N., Bargo, M.S., Cassini, G.H., Vizcaíno, S.F., The forelimb of early Miocene sloths (Mammalia, Xenarthra, Folivora): Morphometrics and functional implications for substrate preferences (2012) Journal of Mammalian Evolution, 19, pp. 185-198
  • Venables, W.N., Ripley, B.D., Modern applied statistics with S, 4th ed (2002) Springer, New York
  • Weisbecker, V., Mitgutsch, C., A large-scale survey of heterochrony in anuran cranial ossification patterns (2010) Journal of Zoological Systematics and Evolutionary Research, 48, pp. 332-347
  • Wells, K.D., The ecology and behavior of amphibians, 1st ed (2007) University of Chicago Press, Chicago
  • Zug, R.G., Anuran locomotion: Structure and function. I. Preliminary observations on relation between jumping and osteometrics of appendicular and postaxial skeleton (1972) Copeia, 4, pp. 613-624
  • Zug, R.G., Anuran locomotion-structure and function II: Jumping performance of semiaquatic, terrestrial, and arboreal frogs (1978) Smithsonian Contributions to Zoology, 276, pp. 1-32

Citas:

---------- APA ----------
Lires, A.I., Soto, I.M. & Gómez, R.O. (2016) . Walk before you jump: New insights on early frog locomotion from the oldest known salientian. Paleobiology, 42(4), 612-623.
http://dx.doi.org/10.1017/pab.2016.11
---------- CHICAGO ----------
Lires, A.I., Soto, I.M., Gómez, R.O. "Walk before you jump: New insights on early frog locomotion from the oldest known salientian" . Paleobiology 42, no. 4 (2016) : 612-623.
http://dx.doi.org/10.1017/pab.2016.11
---------- MLA ----------
Lires, A.I., Soto, I.M., Gómez, R.O. "Walk before you jump: New insights on early frog locomotion from the oldest known salientian" . Paleobiology, vol. 42, no. 4, 2016, pp. 612-623.
http://dx.doi.org/10.1017/pab.2016.11
---------- VANCOUVER ----------
Lires, A.I., Soto, I.M., Gómez, R.O. Walk before you jump: New insights on early frog locomotion from the oldest known salientian. Paleobiology. 2016;42(4):612-623.
http://dx.doi.org/10.1017/pab.2016.11