Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A significant wave activity (WA) in the upper troposphere and lower stratosphere, mainly during winter, was detected at midlatitudes in the southern hemisphere (30-40S) above the Andes Range, from an analysis of Global Positioning System Radio Occultation (GPS RO) temperature profiles retrieved by CHAMP (CHAllenging Mini-satellite Payload) and SAC-C (Satélite de Aplicaciones Científicas-C) Low Earth Orbit (LEO) satellites, between May 2001 and February 2006. The possible main gravity wave sources in this region are: i) orographic forcing, ii) geostrophic adjustment and iii) deep convection. The available vertical resolution of GPS RO soundings does not rule out any of these alternatives. Based on satellite imaginary, the WA enhancements cannot be attributed to deep convection events. Inertia-gravity waves (IGWs) could be generated after a geostrophic adjustment process, following a perturbation of the zonal jet situated above the Andes Mountains by mountain waves (MWs). The monthly WA intensity follows the zonal wind velocity strength according to its seasonal variability at jet altitudes. As the GPS-LEO lines of sight are roughly meridionally aligned and the morphology of the Andes at middle latitudes is predominantly north-south, it was possible to detect MWs as well as IGWs from GPS RO temperature profiles. This characteristic does not apply for other mountain range alignments. From the analysis of a numerical simulation at the time and location of a single RO event with very strong WA, two main modes of oscillation with horizontal wavelength around 40 and 200 km were identified. The first one is attributed to a MW and the second one to an IGW. Copyright 2006 by the American Geophysical Union.

Registro:

Documento: Artículo
Título:Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism?
Autor:de la Torre, A.; Alexander, P.; Llamedo, P.; Menéndez, C.; Schmidt, T.; Wickert, J.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenas Aires, 1428 Buenos Aires, Argentina
Departamento de Ciencias de la Atmósfera, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Department 1: Geodesy and Remote Sensing, GeoForschungsZentrum Potsdam, Telegrafenberg A17, D-14473 Potsdam, Germany
Palabras clave:Atmospheric temperature; Global positioning system; Jets; Numerical analysis; Troposphere; Upper atmosphere; Weather satellites; Wind; Challenging mini-satellite payload; Low earth orbit; Radio occultation; Gravity waves; geostrophic flow; GPS; gravity wave; numerical method; satellite imagery; Southern Hemisphere; stratosphere; temperature profile; troposphere; wavelength; winter; zonal wind
Año:2006
Volumen:33
Número:24
DOI: http://dx.doi.org/10.1029/2006GL027343
Título revista:Geophysical Research Letters
Título revista abreviado:Geophys. Res. Lett.
ISSN:00948276
CODEN:GPRLA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00948276_v33_n24_p_delaTorre.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00948276_v33_n24_p_delaTorre

Referencias:

  • de la Torre, A., Alexander, P., The interpretation of wavelengths and periods as measured from atmospheric balloons (1995) J. Appl. Meteorol, 34, pp. 2747-2754
  • de la Torre, A., Alexander, P., Gravity waves above Andes detected from GPS radio occultation temperature profiles: Mountain forcing? (2005) Geophys. Res. Lett, 32, pp. L17815. , doi:10.1029/ 2005GL022959
  • de la Torre, A., Giraldez, A., Alexander, P., Saturated gravity wave spectra measured with balloons in Mendoza (Argentina) (1994) Geophys. Res. Lett, 21, pp. 2039-2042
  • de la Torre, A., A deep convection event above the Tunuyán Valley near to the Andes Mountains (2004) Mon. Weather Rev, 132, pp. 2259-2268
  • Fritts, D.C., Alexander, J., Gravity wave dynamics and effects in the middle atmosphere (2003) Rev. Geophys, 41 (1), p. 1003. , doi:10.1029/2001RG000106
  • Liou, Y.A., Application of GPS radio occultation method for observation of the internal waves in the atmosphere (2006) J. Geophys. Res, 111, pp. D06104. , doi:10.1029/2005JD005823
  • Menéndez, C.G., Cabré, M.F., Núñez, M., Interannual and diurnal variability of January precipitation over subtropical South America simulated by a regional climate model (2004) CLIVAR Exchanges, 29, p. 9
  • Nappo, C.J., (2002) An Introduction to Atmospheric Gravity Waves, , 276 pp, Elsevier, New York
  • Plougonven, R., Teitelbaum, H., Zeitlin, V., Inertia-gravity wave generation by the tropospheric midlatitude jet as given by the Fronts and Atlantic Storm-Track Experiment radio soundings (2003) J. Geophys. Res, 108 (D21), p. 4686. , doi:10.1029/2003JD003535
  • Ratnam, M.V., Tetzlaff, G., Jacobi, C., Global and seasonal variations of stratospheric gravity wave activity deduced from the CHAMP/ GPS satellite (2004) J. Atmos. Sci, 61, pp. 1610-1620
  • Reeder, M.J., Griffiths, M., Stratospheric inertia-gravity waves generated in a numerical model of frontogenesis. II: Wave sources, generation mechanisms and momentum fluxes (1996) Q. J. R. Meteorol. Soc, 122, pp. 1175-1195
  • Scavuzzo, C.M., A study of the low-frequency inertio-gravity waves observed during the Pyrnes Experiment (1998) J. Geophys. Res, 103, pp. 1747-1758
  • Thomas, L., Prichard, I.T., Astin, I., Radar observations of an inertia-gravity wave in the troposphere and lower stratosphere (1992) Ann. Geophys, 10, pp. 690-697
  • Uccellini, L.W., Koch, S.E., The synoptic settings and possible energy sources for mesoscale wave disturbances (1987) Mon. Weather Rev, 115, pp. 721-729
  • Whiteway, J.A., Duck, T.J., Enhanced Arctic stratospheric gravity wave activity above a tropospheric jet (1999) Geophys. Res. Lett, 26, pp. 2453-2456
  • Wickert, J., Atmosphere sounding by GPS radio occultation: First results from CHAMP (2001) Geophys. Res. Lett, 28, pp. 3263-3266
  • Wu, D.L., Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques (2006) Adv. Space Res, 37, pp. 2269-2277
  • Zhang, F., Generation of mesoscale gravity waves in upper-tropospheric jet-front systems (2004) J. Atmos. Sci, 61, pp. 440-457
  • Zhang, F., Wavelet analysis and the governing dynamics of a large-amplitude gravity wave event along the east coast of the United States (2001) Q. J. R. Meteorol. Soc, 127, pp. 2209-2245

Citas:

---------- APA ----------
de la Torre, A., Alexander, P., Llamedo, P., Menéndez, C., Schmidt, T. & Wickert, J. (2006) . Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism?. Geophysical Research Letters, 33(24).
http://dx.doi.org/10.1029/2006GL027343
---------- CHICAGO ----------
de la Torre, A., Alexander, P., Llamedo, P., Menéndez, C., Schmidt, T., Wickert, J. "Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism?" . Geophysical Research Letters 33, no. 24 (2006).
http://dx.doi.org/10.1029/2006GL027343
---------- MLA ----------
de la Torre, A., Alexander, P., Llamedo, P., Menéndez, C., Schmidt, T., Wickert, J. "Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism?" . Geophysical Research Letters, vol. 33, no. 24, 2006.
http://dx.doi.org/10.1029/2006GL027343
---------- VANCOUVER ----------
de la Torre, A., Alexander, P., Llamedo, P., Menéndez, C., Schmidt, T., Wickert, J. Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism?. Geophys. Res. Lett. 2006;33(24).
http://dx.doi.org/10.1029/2006GL027343