Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Explosion of a metallic wire due to a large electrical current can be used for studying metallic states difficult to reach with other methods. Due to experimental constraints, direct measurement of the voltage drop across the wire is impractical, although many characteristics of the metal state in the wire can be derived from these waveforms. Usually, the transformation of the electrical signals is made with the assumption of a lumped model for all the elements of the circuit, including the wire. We discuss the validity of a lumped model, and we show that due to the variation in time of the current density distribution on the wire, this model will not provide accurate values for the wire resistivity. Wire resistivity inaccuracies are specially clear in gas and plasma states, due to the diffusion and movement of the current that produce a large variation of the magnetic flux inside the wire. In order to obtain more precise results in the resistivity of the wire metal, regardless of its state, a better approach is the use of Faraday's law of induction on a path along the border of the wire. Our experiments of exploding wires in atmospheric air present the advantage of the clear electrical boundary between the expanding wire and the surrounding air, where no current circulates. As the state of the wire boundary layer changes from solid to plasma, it is possible to estimate the resistivity of the metal in those states in a more precise way. © 1973-2012 IEEE.

Registro:

Documento: Artículo
Título:On the Measurement of the Resistivity in an Exploding Wire Experiment
Autor:Bilbao, L.; Rodríguez Prieto, G.
Filiación:Departamento de Física, Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires, 1053, Argentina
CONICET, Infip, Buenos Aires, Argentina
Universidad de Castilla-La Mancha, Ciudad Real, Spain
INEI, Ciudad Real, Spain
Palabras clave:Atmospheric-pressure plasmas; circuit analysis; exploding wire; metals; resistivity; Atmospheric pressure; Boundary layers; Electric conductivity; Electric network analysis; Electric resistance; Metals; Probes; Resonant circuits; Voltage measurement; Wire; Atmospheric pressure plasmas; Current density distribution; Direct measurement; Electrical boundary; Electrical current; Integrated circuit modeling; Measurement of the resistivity; RLC circuit; Exploding wires
Año:2018
Volumen:46
Número:3
Página de inicio:466
Página de fin:473
DOI: http://dx.doi.org/10.1109/TPS.2018.2795802
Título revista:IEEE Transactions on Plasma Science
Título revista abreviado:IEEE Trans Plasma Sci
ISSN:00933813
CODEN:ITPSB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00933813_v46_n3_p466_Bilbao

Referencias:

  • Oshima, K., Blast waves produced by exploding wire (1960) Aeronautical Res. Inst., , Univ. Tokio, Tokyo, Japan, Tech. Rep. 358
  • Vermij, L., The voltage across a fuse during the current interruption process (1980) IEEE Trans. Plasma Sci., 8 (4), pp. 460-468. , Dec
  • Kotov, Y.A., Electric explosion of wires as a method for preparation of nanopowders (2003) J. Nanoparticle Res., 5 (5-6), pp. 539-550
  • Liverts, M., Ram, O., Sadot, O., Apazidis, N., Ben-Dor, G., Mitigation of exploding-wire-generated blast-waves by aqueous foam (2015) Phys. Fluids, 27 (7), p. 076103
  • Thomas, R.J., Hearst, J.R., An electronic scheme for measuring exploding wire energy (1967) IEEE Trans. Instrum. Meas., IM-16 (1), pp. 51-62. , Mar
  • DeSilva, A.W., Katsouros, J.D., Electrical conductivity of dense copper and aluminum plasmas (1998) Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., 57 (5), pp. 5945-5951
  • Sinars, D.B., Experiments measuring the initial energy deposition, expansion rates and morphology of exploding wires with about 1 kA/wire (2001) Phys. Plasmas, 8 (1), pp. 216-230
  • Chandler, K.M., Hammer, D.A., Sinars, D.B., Pikuz, S.A., Shelkovenko, T.A., The relationship between exploding wire expansion rates and wire material properties near the boiling temperature (2002) IEEE Trans. Plasma Sci., 30 (2), pp. 577-587. , Apr
  • Sahoo, S., Saxena, A.K., Kaushik, T.C., Gupta, S.C., Effect of energy deposition rate on plasma expansion characteristics and nanoparticle generation by electrical explosion of conductors (2015) High Energy Density Phys., 17, pp. 270-276. , Dec
  • Sasaki, T., Nakajima, M., Kawamura, T., Horioka, K., Electrical conductivities of aluminum, copper, and tungsten observed by an underwater explosion (2010) Phys. Plasmas, 17 (8), p. 084501
  • Sheftman, D., Krasik, Y.E., Evaluation of electrical conductivity and equations of state of non-ideal plasma through microsecond timescale underwater electrical wire explosion (2011) Phys. Plasmas, 18 (9), p. 092704. , Sep
  • Stephens, J., Dickens, J., Neuber, A., Semiempirical wide-range conductivity model with exploding wire verification (2014) Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., 89 (5), p. 053102
  • Vanderburg, A., The electrical specific action to melt of structural copper and aluminum alloys (2014) IEEE Trans. Plasma Sci., 42 (10), pp. 3167-3172. , Oct
  • Lebedev, S.V., Effect of discrete wires on the implosion dynamics of wire array Z pinches (2001) Phys. Plasmas, 8 (8), p. 3734
  • Haines, M.G., A heuristic model of the wire array Z-pinch (1998) IEEE Trans. Plasma Sci., 26 (4), pp. 1275-1281. , Aug
  • Chittenden, J.P., Lebedev, S.V., Bell, A.R., Aliaga-Rossel, R., Bland, S.N., Haines, M.G., Plasma formation and implosion structure in wire array Z pinches (1999) Phys. Rev. Lett., 83 (1), pp. 100-103
  • Garasi, C.J., Bliss, D.E., Mehlhorn, T.A., Oliver, B.V., Robinson, A.C., Sarkisov, G.S., Multi-dimensional high energy density physics modeling and simulation of wire array Z-pinch physics (2004) Phys. Plasmas, 11 (5), p. 2729
  • Prieto, G.R., Bilbao, L., Milanese, M., Temporal distribution of the electrical energy on an exploding wire (2016) Laser Particle Beams, 34 (2), pp. 263-269. , http://journals.cambridge.org/article_S0263034616000069
  • Bilbao, L., Comments on 'the time evolution of the resistances and inductances of the discharges in a pulsed gas laser through its current waveforms (1998) IEEE Trans. Plasma Sci., 26 (1), pp. 119-121. , Feb
  • Nash, C.P., McMillan, W.G., On the mechanism of exploding wires (1961) Phys. Fluids, 4 (7), pp. 911-917
  • DeSilva, A.W., Kunze, H.-J., Experimental study of the electrical conductivity of strongly coupled copper plasmas (1994) Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., 49 (5), pp. 4448-4454. , May
  • Grinenko, A., Krasik, Y.E., Efimov, S., Fedotov, A., Gurovich, V.T., Oreshkin, V.I., Nanosecond time scale, high power electrical wire explosion in water (2006) Phys. Plasmas, 13 (4), p. 042701
  • Bruzzone, H., Kelly, H., Moreno, C., On the effect of finite closure time of switches in electrical circuits with fast transient behavior (1989) Amer. J. Phys., 57 (1), pp. 63-66. , http://scitation.aip.org/content/aapt/journal/ajp/57/1/10.1119/1.15872
  • Fridman, B.E., Persephonis, P., Giannetas, V., Ioannou, A., Parthenios, J., Georgiades, C., Comments on 'the time evolution of the resistances and inductances of the discharges in a pulsed gas laser through its current waveforms (1997) IEEE Trans. Plasma Sci., 25 (4), pp. 799-801. , Aug
  • Matula, R.A., Electrical resistivity of copper, gold, palladium, and silver (1979) J. Phys. Chem. Ref. Data, 8 (4), pp. 1147-1298. , http://scitation.aip.org/content/aip/journal/jpcrd/8/4/10.1063/1.555614
  • Bilbao, L., A three-dimensional finite volume arbitrary Lagrangian-Eulerian code for plasma simulations (2006) Proc. AIP Conf., 875 (1), pp. 467-472. , http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2405990

Citas:

---------- APA ----------
Bilbao, L. & Rodríguez Prieto, G. (2018) . On the Measurement of the Resistivity in an Exploding Wire Experiment. IEEE Transactions on Plasma Science, 46(3), 466-473.
http://dx.doi.org/10.1109/TPS.2018.2795802
---------- CHICAGO ----------
Bilbao, L., Rodríguez Prieto, G. "On the Measurement of the Resistivity in an Exploding Wire Experiment" . IEEE Transactions on Plasma Science 46, no. 3 (2018) : 466-473.
http://dx.doi.org/10.1109/TPS.2018.2795802
---------- MLA ----------
Bilbao, L., Rodríguez Prieto, G. "On the Measurement of the Resistivity in an Exploding Wire Experiment" . IEEE Transactions on Plasma Science, vol. 46, no. 3, 2018, pp. 466-473.
http://dx.doi.org/10.1109/TPS.2018.2795802
---------- VANCOUVER ----------
Bilbao, L., Rodríguez Prieto, G. On the Measurement of the Resistivity in an Exploding Wire Experiment. IEEE Trans Plasma Sci. 2018;46(3):466-473.
http://dx.doi.org/10.1109/TPS.2018.2795802