Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The behavior of some selected visible spectral lines emitted in the interelectrode space of a Copper vacuum arc operated with background gases (mainly Oxygen gas) is determined in terms of the gas filling pressure value. It is found that the behavior of these CuI and CuII lines with the gas pressure value is essentially the opposite: after an intensity "plateau" at low-pressure values, the CuI line intensity grows, while the corresponding CuII intensity decreases. On the other hand, no transitions corresponding to CuIII were registered within the spectral range investigated (340 to 600 nm). The measured line intensities are compared with the particle densities calculated with a one-dimensional model, which includes four metallic species (having no inner structure) with different charge state, and takes into account ion slowing down by elastic scattering with neutrals, radial diffusion loses to the chamber wall, charge-exchange processes with neutrals and ionization (or recombination) of the gas molecules (or gaseous ions) by electron impact. It is inferred that the population of an excited level responsible for a given emission line is much smaller (of the order of 103-104 cm-3) than those expected for the fundamental levels of the particles. The explanation for the observed behavior of these spectral lines with the pressure value rests on the local generation of excited states from lower lying levels by electron impact, but admitting the presence of a certain amount of metal vapor (generated by microdroplet evaporation in the vicinities of the cathode surface) in the interelectrode region.

Registro:

Documento: Artículo
Título:Spectroscopic line behavior in a DC copper vacuum arc operated with background gas
Autor:Grondona, D.; Kelly, H.; Márquez, A.; Lepone, A.
Filiación:Departamento de Física, Fac. de Ciencias, Exactas/Naturales, UBA, Buenos Aires 1428, Argentina
Palabras clave:Emission spectroscopy; Ion-gas atomic interactions; Vacuum arc; Copper; Diffusion in gases; Emission spectroscopy; Ionization of gases; Oxygen; Scattering; Vacuum applications; Copper vacuum arcs; Electric arcs
Año:2002
Volumen:30
Número:1 III
Página de inicio:391
Página de fin:396
DOI: http://dx.doi.org/10.1109/TPS.2002.1003886
Título revista:IEEE Transactions on Plasma Science
Título revista abreviado:IEEE Trans Plasma Sci
ISSN:00933813
CODEN:ITPSB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00933813_v30_n1III_p391_Grondona

Referencias:

  • Boxman, R.L., Sanders, D.M., Martin, P.J., (1995) Handbook of Vacuum Arc Science and Technology, Fundamentals and Applications, , Park Ridge, NJ: Noyes
  • Kutzner, J., Miller, H.C., Ion flux from the cathode region of a vacuum arc (1989) IEEE Trans. Plasma Sci., 17, pp. 688-694. , Oct
  • Brown, I.G., Vacuum arc ion sources (1994) Rev. Sci. Instrum., 65, pp. 3061-3081
  • Randhawa, H., Cathodic arc plasma deposition technology (1988) Thin Solid Films, 167, pp. 175-185
  • Demidenko, I.I., Lomino, N.S., Ovcharenko, V.D., Padalka, V.G., Poliakova, G.N., Ionization mechanism for nitrogen in a vacuum arc discharge (1984) Sov. Phys. Tech. Phys., 29, pp. 895-897
  • Martin, P.J., MacKenzie, D.R., Netterfield, R.P., Swift, P., Filipczuk, S.W., Muller, K.H., Pacey, C.G., James, B., Characteristics of titanium arc evaporation processes (1987) Thin Solid Films, 153, pp. 91-102
  • Bergman, C., Ion flux characteristics in arc vapor deposition of TIN (1988) Surf. Coat. Technol., 36, pp. 243-255
  • Sakaki, M., Sakakibara, T., Excitation, ionization, and reaction mechanism of a reactive cathodic arc deposition of TIN (1994) IEEE Trans. Plasma Sci., 22, pp. 1049-1054. , Dec
  • Bilek, M.M.M., Martin, P.J., MacKenzie, D.R., Influence of gas pressure and cathode composition on ion energy distributions in filtered cathodic vacuum arcs (1998) J. Appl. Phys., 83, pp. 2965-2970
  • Kelly, H., Lepone, A., Márquez, A., Characterization of plasma-gas interactions in a copper cathodic arc Operated in oxygen (2001) J. Appl. Phys., 89, pp. 1567-1572
  • Lepone, A., Kelly, H., Spatial density profiles of metallic ions with different charge-states from a vacuum arc operated with background gas (2001) J. Phys. D: Appl. Phys., 34, pp. 3043-3050
  • NIST Atomic Spectra Database, , http://physics.nist.gov/cgi-bin/AtData/, Online
  • Reader, J., Corliss, C.H., Line spectra of the elements (1997) Handbook of Chemistry and Physics, 78 ed., , Sect. 10-1
  • Anders, A., Anders, S., Emission spectroscopy of low-current vacuum arcs (1991) J. Phys. D, Appl. Phys., 24, pp. 1986-1992
  • Lochte-Holtgreven, W., (1995) Plasma Diagnostics, , New York: AIP
  • Lunev, V.M., Padalka, V.G., Koroshikh, V.M., Plasma properties of a metal vacuum arc. II (1977) Sov. Phys.-Tech. Phys., 22, pp. 858-861
  • Davis, W.D., Miller, H.C., Analysis of the electrode products emitted by dc arcs in a vacuum ambient (1969) J. Appl. Phys., 40, pp. 2212-2221
  • Brown, I.G., Feinberg, B., Galvin, J.E., Multiply stripped ion generation in the metal vapor vacuum arc (1988) J. Appl. Phys., 63, pp. 4889-4898
  • Brown, I.G., Godechot, X., Vacuum arc ion charge-state distributions (1991) IEEE Trans. Plasma Sci., 19, pp. 713-717
  • Kimblin, C.W., Erosion and ionization in the cathode spot regions of vacuum arcs (1973) J. Appl. Phys., 44, pp. 3074-3081
  • Anders, S., Anders, A., Frozen state of ionization in a cathodic plasma jet of a vacuum arc (1988) J. Phys. D, Appl. Phys., 21, pp. 213-215
  • Krinberg, I.A., Lukovnikova, M.P., Estimating cathodic plasma jet parameters from the vacuum arc charge state distribution (1995) J. Phys. D, Appl. Phys., 28, pp. 711-715
  • Anders, A., Ion charge state distribution of vacuum arc plasmas: The origin of species (1997) Phys. Rev. E, Stat. Phys. Plasmas. Fluids Relat. Interdiscip. Top., 55, pp. 969-981
  • Musielok, J., Spectroscopic data for atoms and ions and their application in plasma diagnostics (2000) J. Tech. Phys., 41 (2), pp. 73-80
  • Lepone, A., Kelly, H., Márquez, A., The role of metallic neutrals and gaseous molecular ions in a Copper cathodic arc operated with Oxygen gas (2001) J. Appl. Phys., 90, pp. 3174-3181. , Oct
  • Bibliographic and Numerical Atomic & Molecular Databases, , http://dbshino.nifs.ac.jp/, Online
  • Muller, A., Salzborn, E., Scaling of cross sections for multiple electron transfer to highly charged ions colliding with atoms and molecules (1977) Phys. Lett., 62 A, pp. 391-394
  • Raizer, Y.P., (1991) Gas Discharge Physics, , Berlin, Germany: Springer-Verlag
  • Daalder, J.D., Components of cathode erosion in vacuum arcs (1976) J. Phys. D, Appl. Phys., 9, pp. 2379-2395
  • Brown, I.G., Shiraishi, H., Cathode erosion rates in vacuum-arc discharges (1990) IEEE Trans. Plasma Sci., 18, pp. 170-171. , Feb
  • Boxman, R.L., Goldsmith, S., Macroparticle contamination in cathodic arc coatings: Generation, transport and control (1992) Surf. Coat. Technol., 52, pp. 39-50
  • The interaction between plasma and macroparticles in a multi-cathode-spot vacuum arc (1981) J. Appl. Phys., 52, pp. 151-161

Citas:

---------- APA ----------
Grondona, D., Kelly, H., Márquez, A. & Lepone, A. (2002) . Spectroscopic line behavior in a DC copper vacuum arc operated with background gas. IEEE Transactions on Plasma Science, 30(1 III), 391-396.
http://dx.doi.org/10.1109/TPS.2002.1003886
---------- CHICAGO ----------
Grondona, D., Kelly, H., Márquez, A., Lepone, A. "Spectroscopic line behavior in a DC copper vacuum arc operated with background gas" . IEEE Transactions on Plasma Science 30, no. 1 III (2002) : 391-396.
http://dx.doi.org/10.1109/TPS.2002.1003886
---------- MLA ----------
Grondona, D., Kelly, H., Márquez, A., Lepone, A. "Spectroscopic line behavior in a DC copper vacuum arc operated with background gas" . IEEE Transactions on Plasma Science, vol. 30, no. 1 III, 2002, pp. 391-396.
http://dx.doi.org/10.1109/TPS.2002.1003886
---------- VANCOUVER ----------
Grondona, D., Kelly, H., Márquez, A., Lepone, A. Spectroscopic line behavior in a DC copper vacuum arc operated with background gas. IEEE Trans Plasma Sci. 2002;30(1 III):391-396.
http://dx.doi.org/10.1109/TPS.2002.1003886