Artículo

Zenker, J.; White, M.D.; Gasnier, M.; Alvarez, Y.D.; Lim, H.Y.G.; Bissiere, S.; Biro, M.; Plachta, N. "Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation" (2018) Cell. 173(3):776-791.e17
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Transformation from morula to blastocyst is a defining event of preimplantation embryo development. During this transition, the embryo must establish a paracellular permeability barrier to enable expansion of the blastocyst cavity. Here, using live imaging of mouse embryos, we reveal an actin-zippering mechanism driving this embryo sealing. Preceding blastocyst stage, a cortical F-actin ring assembles at the apical pole of the embryo's outer cells. The ring structure forms when cortical actin flows encounter a network of polar microtubules that exclude F-actin. Unlike stereotypical actin rings, the actin rings of the mouse embryo are not contractile, but instead, they expand to the cell-cell junctions. Here, they couple to the junctions by recruiting and stabilizing adherens and tight junction components. Coupling of the actin rings triggers localized myosin II accumulation, and it initiates a tension-dependent zippering mechanism along the junctions that is required to seal the embryo for blastocyst formation. Expanding actin rings zipper the mouse embryo to seal it and allow formation of the blastocyst cavity. © 2018 Elsevier Inc.

Registro:

Documento: Artículo
Título:Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation
Autor:Zenker, J.; White, M.D.; Gasnier, M.; Alvarez, Y.D.; Lim, H.Y.G.; Bissiere, S.; Biro, M.; Plachta, N.
Filiación:Institute of Molecular and Cell Biology, A∗STAR, Singapore
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, Australia
ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
Department of Biochemistry, National University of Singapore, Singapore, United Kingdom
Palabras clave:actin dynamics; blastocyst; cortical flow; epithelia; live imaging; mammalian development; microtubules; morphogenesis; preimplantation mouse embryo; tight junctions; actin; myosin II; actin; cytoskeleton protein; green fluorescent protein; myosin II; small interfering RNA; actin capping; actin filament; animal cell; Article; bioaccumulation; blastocyst; cell junction; developmental stage; embryo; live cell imaging; microtubule; mouse; nonhuman; priority journal; protein localization; protein structure; animal; blastocyst; C57BL mouse; cell communication; chemistry; embryo development; female; mammalian embryo; metabolism; morula; three dimensional imaging; tight junction; Actins; Animals; Blastocyst; Cell Communication; Cytoskeletal Proteins; Embryo, Mammalian; Embryonic Development; Female; Green Fluorescent Proteins; Imaging, Three-Dimensional; Mice; Mice, Inbred C57BL; Microtubules; Morula; Myosin Type II; RNA, Small Interfering; Tight Junctions
Año:2018
Volumen:173
Número:3
Página de inicio:776
Página de fin:791.e17
DOI: http://dx.doi.org/10.1016/j.cell.2018.02.035
Título revista:Cell
Título revista abreviado:Cell
ISSN:00928674
CODEN:CELLB
CAS:Actins; Cytoskeletal Proteins; Green Fluorescent Proteins; Myosin Type II; RNA, Small Interfering
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00928674_v173_n3_p776_Zenker

Referencias:

  • Alarcon, V.B., Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo (2010) Biol. Reprod., 83, pp. 347-358
  • Anani, S., Bhat, S., Honma-Yamanaka, N., Krawchuk, D., Yamanaka, Y., Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo (2014) Development, 141, pp. 2813-2824
  • Arnold, T.R., Stephenson, R.E., Miller, A.L., Rho GTPases and actomyosin: Partners in regulating epithelial cell-cell junction structure and function (2017) Exp. Cell Res., 358, pp. 20-30
  • Arora, R., Fries, A., Oelerich, K., Marchuk, K., Sabeur, K., Giudice, L.C., Laird, D.J., Insights from imaging the implanting embryo and the uterine environment in three dimensions (2016) Development, 143, pp. 4749-4754
  • Bettencourt-Dias, M., Glover, D.M., Centrosome biogenesis and function: centrosomics brings new understanding (2007) Nat. Rev. Mol. Cell Biol., 8, pp. 451-463
  • Biro, M., Romeo, Y., Kroschwald, S., Bovellan, M., Boden, A., Tcherkezian, J., Roux, P.P., Paluch, E.K., Cell cortex composition and homeostasis resolved by integrating proteomics and quantitative imaging (2013) Cytoskeleton (Hoboken), 70, pp. 741-754
  • Borowiak, M., Nahaboo, W., Reynders, M., Nekolla, K., Jalinot, P., Hasserodt, J., Rehberg, M., Vollmar, A., Photoswitchable Inhibitors of Microtubule Dynamics Optically Control Mitosis and Cell Death (2015) Cell, 162, pp. 403-411
  • Burkel, B.M., von Dassow, G., Bement, W.M., Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin (2007) Cell Motil. Cytoskeleton, 64, pp. 822-832
  • Canman, J.C., Bement, W.M., Microtubules suppress actomyosin-based cortical flow in Xenopus oocytes (1997) J. Cell Sci., 110, pp. 1907-1917
  • Cassimeris, L., Guglielmi, L., Denis, V., Larroque, C., Martineau, P., Specific in vivo labeling of tyrosinated α-tubulin and measurement of microtubule dynamics using a GFP tagged, cytoplasmically expressed recombinant antibody (2013) PLoS ONE, 8, p. e59812
  • Cavey, M., Rauzi, M., Lenne, P.F., Lecuit, T., A two-tiered mechanism for stabilization and immobilization of E-cadherin (2008) Nature, 453, pp. 751-756
  • Charras, G., Paluch, E., Blebs lead the way: how to migrate without lamellipodia (2008) Nat. Rev. Mol. Cell Biol., 9, pp. 730-736
  • Chazaud, C., Yamanaka, Y., Pawson, T., Rossant, J., Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway (2006) Dev. Cell, 10, pp. 615-624
  • Choi, W., Jung, K.C., Nelson, K.S., Bhat, M.A., Beitel, G.J., Peifer, M., Fanning, A.S., The single Drosophila ZO-1 protein Polychaetoid regulates embryonic morphogenesis in coordination with Canoe/afadin and Enabled (2011) Mol. Biol. Cell, 22, pp. 2010-2030
  • Clift, D., Schuh, M., A three-step MTOC fragmentation mechanism facilitates bipolar spindle assembly in mouse oocytes (2015) Nat. Commun., 6, p. 7217
  • Coelho, P.A., Bury, L., Sharif, B., Riparbelli, M.G., Fu, J., Callaini, G., Glover, D.M., Zernicka-Goetz, M., Spindle formation in the mouse embryo requires Plk4 in the absence of centrioles (2013) Dev. Cell, 27, pp. 586-597
  • Conduit, P.T., Wainman, A., Raff, J.W., Centrosome function and assembly in animal cells (2015) Nat. Rev. Mol. Cell Biol., 16, pp. 611-624
  • Dard, N., Louvet, S., Santa-Maria, A., Aghion, J., Martin, M., Mangeat, P., Maro, B., In vivo functional analysis of ezrin during mouse blastocyst formation (2001) Dev. Biol., 233, pp. 161-173
  • David, D.J., Tishkina, A., Harris, T.J., The PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in Drosophila (2010) Development, 137, pp. 1645-1655
  • Diz-Muñoz, A., Krieg, M., Bergert, M., Ibarlucea-Benitez, I., Muller, D.J., Paluch, E., Heisenberg, C.P., Control of directed cell migration in vivo by membrane-to-cortex attachment (2010) PLoS Biol., 8, p. e1000544
  • Ducibella, T., Albertini, D.F., Anderson, E., Biggers, J.D., The preimplantation mammalian embryo: characterization of intercellular junctions and their appearance during development (1975) Dev. Biol., 45, pp. 231-250
  • Eckert, J.J., Fleming, T.P., Tight junction biogenesis during early development (2008) Biochim. Biophys. Acta, 1778, pp. 717-728
  • Fanning, A.S., Van Itallie, C.M., Anderson, J.M., Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia (2012) Mol. Biol. Cell, 23, pp. 577-590
  • Fededa, J.P., Gerlich, D.W., Molecular control of animal cell cytokinesis (2012) Nat. Cell Biol., 14, pp. 440-447
  • Fernandez-Gonzalez, R., Simoes, S.M., Röper, J.C., Eaton, S., Zallen, J.A., Myosin II dynamics are regulated by tension in intercalating cells (2009) Dev. Cell, 17, pp. 736-743
  • Fierro-González, J.C., White, M.D., Silva, J.C., Plachta, N., Cadherin-dependent filopodia control preimplantation embryo compaction (2013) Nat. Cell Biol., 15, pp. 1424-1433
  • Galea, G.L., Cho, Y.J., Galea, G., Molè, M.A., Rolo, A., Savery, D., Moulding, D., Copp, A.J., Biomechanical coupling facilitates spinal neural tube closure in mouse embryos (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E5177-E5186
  • Hashimoto, H., Robin, F.B., Sherrard, K.M., Munro, E.M., Sequential contraction and exchange of apical junctions drives zippering and neural tube closure in a simple chordate (2015) Dev. Cell, 32, pp. 241-255
  • Heisenberg, C.P., Bellaïche, Y., Forces in tissue morphogenesis and patterning (2013) Cell, 153, pp. 948-962
  • Hirate, Y., Hirahara, S., Inoue, K., Kiyonari, H., Niwa, H., Sasaki, H., Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos (2015) Dev. Growth Differ., 57, pp. 544-556
  • Howe, K., FitzHarris, G., A non-canonical mode of microtubule organization operates throughout pre-implantation development in mouse (2013) Cell Cycle, 12, pp. 1616-1624
  • Johnson, M.H., Maro, B., The distribution of cytoplasmic actin in mouse 8-cell blastomeres (1984) J. Embryol. Exp. Morphol., 82, pp. 97-117
  • Kaur, G., Costa, M.W., Nefzger, C.M., Silva, J., Fierro-González, J.C., Polo, J.M., Bell, T.D., Plachta, N., Probing transcription factor diffusion dynamics in the living mammalian embryo with photoactivatable fluorescence correlation spectroscopy (2013) Nat. Commun., 4, p. 1637
  • Képiró, M., Várkuti, B.H., Bodor, A., Hegyi, G., Drahos, L., Kovács, M., Málnási-Csizmadia, A., Azidoblebbistatin, a photoreactive myosin inhibitor (2012) Proc. Natl. Acad. Sci. USA, 109, pp. 9402-9407
  • Kiehart, D.P., Galbraith, C.G., Edwards, K.A., Rickoll, W.L., Montague, R.A., Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila (2000) J. Cell Biol., 149, pp. 471-490
  • Kim, J.H., Ren, Y., Ng, W.P., Li, S., Son, S., Kee, Y.S., Zhang, S., Chen, E.H., Mechanical tension drives cell membrane fusion (2015) Dev. Cell, 32, pp. 561-573
  • Lecuit, T., Yap, A.S., E-cadherin junctions as active mechanical integrators in tissue dynamics (2015) Nat. Cell Biol., 17, pp. 533-539
  • Lecuit, T., Lenne, P.F., Munro, E., Force generation, transmission, and integration during cell and tissue morphogenesis (2011) Annu. Rev. Cell Dev. Biol., 27, pp. 157-184
  • Leung, C.Y., Zhu, M., Zernicka-Goetz, M., Polarity in Cell-Fate Acquisition in the Early Mouse Embryo (2016) Curr. Top. Dev. Biol., 120, pp. 203-234
  • Maiers, J.L., Peng, X., Fanning, A.S., DeMali, K.A., ZO-1 recruitment to α-catenin–a novel mechanism for coupling the assembly of tight junctions to adherens junctions (2013) J. Cell Sci., 126, pp. 3904-3915
  • Maître, J.L., Turlier, H., Illukkumbura, R., Eismann, B., Niwayama, R., Nédélec, F., Hiiragi, T., Asymmetric division of contractile domains couples cell positioning and fate specification (2016) Nature, 536, pp. 344-348
  • Mayer, M., Depken, M., Bois, J.S., Jülicher, F., Grill, S.W., Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows (2010) Nature, 467, pp. 617-621
  • McLaren, A., Smith, R., Functional test of tight junctions in the mouse blastocyst (1977) Nature, 267, pp. 351-353
  • Meng, W., Mushika, Y., Ichii, T., Takeichi, M., Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell–cell contacts (2008) Cell, 135, pp. 948-959
  • Montembault, E., Claverie, M.C., Bouit, L., Landmann, C., Jenkins, J., Tsankova, A., Cabernard, C., Royou, A., Myosin efflux promotes cell elongation to coordinate chromosome segregation with cell cleavage (2017) Nat. Commun., 8, p. 326
  • Moriwaki, K., Tsukita, S., Furuse, M., Tight junctions containing claudin 4 and 6 are essential for blastocyst formation in preimplantation mouse embryos (2007) Dev. Biol., 312, pp. 509-522
  • Morris, S.A., Teo, R.T., Li, H., Robson, P., Glover, D.M., Zernicka-Goetz, M., Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 6364-6369
  • Munro, E., Nance, J., Priess, J.R., Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo (2004) Dev. Cell, 7, pp. 413-424
  • Plachta, N., Bollenbach, T., Pease, S., Fraser, S.E., Pantazis, P., Oct4 kinetics predict cell lineage patterning in the early mammalian embryo (2011) Nat. Cell Biol., 13, pp. 117-123
  • Priya, R., Yap, A.S., Gomez, G.A., E-cadherin supports steady-state Rho signaling at the epithelial zonula adherens (2013) Differentiation, 86, pp. 133-140
  • Rauzi, M., Lenne, P.F., Cortical forces in cell shape changes and tissue morphogenesis (2011) Curr. Top. Dev. Biol., 95, pp. 93-144
  • Rauzi, M., Verant, P., Lecuit, T., Lenne, P.F., Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis (2008) Nat. Cell Biol., 10, pp. 1401-1410
  • Riedl, J., Crevenna, A.H., Kessenbrock, K., Yu, J.H., Neukirchen, D., Bista, M., Bradke, F., Werb, Z., Lifeact: a versatile marker to visualize F-actin (2008) Nat. Methods, 5, pp. 605-607
  • Reymann, A.C., Staniscia, F., Erzberger, A., Salbreux, G., Grill, S.W., Cortical flow aligns actin filaments to form a furrow (2016) eLife, 5, p. e17807
  • Samarage, C.R., White, M.D., Álvarez, Y.D., Fierro-González, J.C., Henon, Y., Jesudason, E.C., Bissiere, S., Plachta, N., Cortical Tension Allocates the First Inner Cells of the Mammalian Embryo (2015) Dev. Cell, 34, pp. 435-447
  • Schwayer, C., Sikora, M., Slováková, J., Kardos, R., Heisenberg, C.P., Actin Rings of Power (2016) Dev. Cell, 37, pp. 493-506
  • Sedzinski, J., Biro, M., Oswald, A., Tinevez, J.Y., Salbreux, G., Paluch, E., Polar actomyosin contractility destabilizes the position of the cytokinetic furrow (2011) Nature, 476, pp. 462-466
  • Smutny, M., Cox, H.L., Leerberg, J.M., Kovacs, E.M., Conti, M.A., Ferguson, C., Hamilton, N.A., Yap, A.S., Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens (2010) Nat. Cell Biol., 12, pp. 696-702
  • Stephenson, R.O., Yamanaka, Y., Rossant, J., Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin (2010) Development, 137, pp. 3383-3391
  • Tinevez, J.Y., Schulze, U., Salbreux, G., Roensch, J., Joanny, J.F., Paluch, E., Role of cortical tension in bleb growth (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 18581-18586
  • Tornavaca, O., Chia, M., Dufton, N., Almagro, L.O., Conway, D.E., Randi, A.M., Schwartz, M.A., Balda, M.S., ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation (2015) J. Cell Biol., 208, pp. 821-838
  • Van Itallie, C.M., Fanning, A.S., Bridges, A., Anderson, J.M., ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton (2009) Mol. Biol. Cell, 20, pp. 3930-3940
  • Watanabe, T., Biggins, J.S., Tannan, N.B., Srinivas, S., Limited predictive value of blastomere angle of division in trophectoderm and inner cell mass specification (2014) Development, 141, pp. 2279-2288
  • Watson, A.J., Barcroft, L.C., Regulation of blastocyst formation (2001) Front. Biosci., 6, pp. D708-D730
  • White, J.G., Borisy, G.G., On the mechanisms of cytokinesis in animal cells (1983) J. Theor. Biol., 101, pp. 289-316
  • White, M.D., Zenker, J., Bissiere, S., Plachta, N., How cells change shape and position in the early mammalian embryo (2017) Curr. Opin. Cell Biol., 44, pp. 7-13
  • Wolff, J., Plasma membrane tubulin (2009) Biochim. Biophys. Acta, 1788, pp. 1415-1433
  • Wolpert, L., The mechanics and mechanism of cleavage (1960) Int. Rev. Cytol., 10, pp. 163-216
  • Yamanaka, Y., Ralston, A., Stephenson, R.O., Rossant, J., Cell and molecular regulation of the mouse blastocyst (2006) Dev. Dyn., 235, pp. 2301-2314
  • Yamanaka, Y., Lanner, F., Rossant, J., FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst (2010) Development, 137, pp. 715-724
  • Yamashita, N., Morita, M., Legant, W.R., Chen, B.C., Betzig, E., Yokota, H., Mimori-Kiyosue, Y., Three-dimensional tracking of plus-tips by lattice light-sheet microscopy permits the quantification of microtubule growth trajectories within the mitotic apparatus (2015) J. Biomed. Opt., 20, p. 101206
  • Yap, A.S., Duszyc, K., Viasnoff, V., Mechanosensing and Mechanotransduction at Cell-Cell Junctions (2017) Cold Spring Harb. Perspect. Biol., , Published online August 4, 2017
  • Yonemura, S., Itoh, M., Nagafuchi, A., Tsukita, S., Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells (1995) J. Cell Sci., 108, pp. 127-142
  • Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A., Shibata, M., alpha-Catenin as a tension transducer that induces adherens junction development (2010) Nat. Cell Biol., 12, pp. 533-542
  • Zenker, J., White, M.D., Templin, R.M., Parton, R.G., Thorn-Seshold, O., Bissiere, S., Plachta, N., A microtubule-organizing center directing intracellular transport in the early mouse embryo (2017) Science, 357, pp. 925-928
  • Zhu, M., Leung, C.Y., Shahbazi, M.N., Zernicka-Goetz, M., Actomyosin polarisation through PLC-PKC triggers symmetry breaking of the mouse embryo (2017) Nat. Commun., 8, p. 921
  • Zihni, C., Mills, C., Matter, K., Balda, M.S., Tight junctions: from simple barriers to multifunctional molecular gates (2016) Nat. Rev. Mol. Cell Biol., 17, pp. 564-580

Citas:

---------- APA ----------
Zenker, J., White, M.D., Gasnier, M., Alvarez, Y.D., Lim, H.Y.G., Bissiere, S., Biro, M.,..., Plachta, N. (2018) . Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation. Cell, 173(3), 776-791.e17.
http://dx.doi.org/10.1016/j.cell.2018.02.035
---------- CHICAGO ----------
Zenker, J., White, M.D., Gasnier, M., Alvarez, Y.D., Lim, H.Y.G., Bissiere, S., et al. "Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation" . Cell 173, no. 3 (2018) : 776-791.e17.
http://dx.doi.org/10.1016/j.cell.2018.02.035
---------- MLA ----------
Zenker, J., White, M.D., Gasnier, M., Alvarez, Y.D., Lim, H.Y.G., Bissiere, S., et al. "Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation" . Cell, vol. 173, no. 3, 2018, pp. 776-791.e17.
http://dx.doi.org/10.1016/j.cell.2018.02.035
---------- VANCOUVER ----------
Zenker, J., White, M.D., Gasnier, M., Alvarez, Y.D., Lim, H.Y.G., Bissiere, S., et al. Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation. Cell. 2018;173(3):776-791.e17.
http://dx.doi.org/10.1016/j.cell.2018.02.035