Artículo

Doncic, A.; Atay, O.; Valk, E.; Grande, A.; Bush, A.; Vasen, G.; Colman-Lerner, A.; Loog, M.; Skotheim, J.M. "Compartmentalization of a bistable switch enables memory to cross a feedback-driven transition" (2015) Cell. 160(6):1182-1195
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cells make accurate decisions in the face of molecular noise and environmental fluctuations by relying not only on present pathway activity, but also on their memory of past signaling dynamics. Once a decision is made, cellular transitions are often rapid and switch-like due to positive feedback loops in the regulatory network. While positive feedback loops are good at promoting switch-like transitions, they are not expected to retain information to inform subsequent decisions. However, this expectation is based on our current understanding of network motifs that accounts for temporal, but not spatial, dynamics. Here, we show how spatial organization of the feedback-driven yeast G1/S switch enables the transmission of memory of past pheromone exposure across this transition. We expect this to be one of many examples where the exquisite spatial organization of the eukaryotic cell enables previously well-characterized network motifs to perform new and unexpected signal processing functions. © 2015 Elsevier Inc.

Registro:

Documento: Artículo
Título:Compartmentalization of a bistable switch enables memory to cross a feedback-driven transition
Autor:Doncic, A.; Atay, O.; Valk, E.; Grande, A.; Bush, A.; Vasen, G.; Colman-Lerner, A.; Loog, M.; Skotheim, J.M.
Filiación:Department of Biology, Stanford University, Stanford, CA 94305, United States
Institute of Technology, University of Tartu50411, Estonia
IFIBYNE-UBA-CONICET, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Palabras clave:pheromone; CDC24 protein, S cerevisiae; cell cycle protein; CLN2 protein, S cerevisiae; cyclin dependent kinase inhibitor; cycline; FAR1 protein, S cerevisiae; guanine nucleotide exchange factor; pheromone; Saccharomyces cerevisiae protein; Article; cell compartmentalization; cell cycle G1 phase; cell cycle S phase; cytoplasm; feedback system; molecular dynamics; nonhuman; priority journal; protein binding; signal transduction; cytology; feedback system; metabolism; physiology; Saccharomyces cerevisiae; Eukaryota; Cell Cycle Proteins; Cyclin-Dependent Kinase Inhibitor Proteins; Cyclins; Cytoplasm; Feedback, Physiological; Guanine Nucleotide Exchange Factors; Pheromones; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Signal Transduction
Año:2015
Volumen:160
Número:6
Página de inicio:1182
Página de fin:1195
DOI: http://dx.doi.org/10.1016/j.cell.2015.02.032
Título revista:Cell
Título revista abreviado:Cell
ISSN:00928674
CODEN:CELLB
CAS:CDC24 protein, S cerevisiae; Cell Cycle Proteins; CLN2 protein, S cerevisiae; Cyclin-Dependent Kinase Inhibitor Proteins; Cyclins; FAR1 protein, S cerevisiae; Guanine Nucleotide Exchange Factors; Pheromones; Saccharomyces cerevisiae Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00928674_v160_n6_p1182_Doncic

Referencias:

  • Alon, U., Network motifs: Theory and experimental approaches (2007) Nat. Rev. Genet., 8, pp. 450-461
  • Behar, M., Hao, N., Dohlman, H.G., Elston, T.C., Dose-to-duration encoding and signaling beyond saturation in intracellular signaling networks (2008) PLoS Comput. Biol., 4, p. e1000197
  • Blackwell, E., Halatek, I.M., Kim, H.J., Ellicott, A.T., Obukhov, A.A., Stone, D.E., Effect of the pheromone-responsive G(alpha) and phosphatase proteins of Saccharomyces cerevisiae on the subcellular localization of the Fus3 mitogen-activated protein kinase (2003) Mol. Cell. Biol., 23, pp. 1135-1150
  • Blondel, M., Alepuz, P.M., Huang, L.S., Shaham, S., Ammerer, G., Peter, M., Nuclear export of Far1p in response to pheromones requires the export receptor Msn5p/Ste21p (1999) Genes Dev., 13, pp. 2284-2300
  • Blondel, M., Galan, J.M., Chi, Y., Lafourcade, C., Longaretti, C., Deshaies, R.J., Peter, M., Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4 (2000) EMBO J., 19, pp. 6085-6097
  • Cai, Y., Futcher, B., Effects of the yeast RNA-binding protein Whi3 on the half-life and abundance of CLN3 mRNA and other targets (2013) PLoS ONE, 8, p. e84630
  • Caudron, F., Barral, Y., A super-assembly of Whi3 encodes memory of deceptive encounters by single cells during yeast courtship (2013) Cell, 155, pp. 1244-1257
  • Chang, F., Herskowitz, I., Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2 (1990) Cell, 63, pp. 999-1011
  • Chen, R.E., Thorner, J., Function and regulation in MAPK signaling pathways: Lessons learned from the yeast Saccharomyces cerevisiae (2007) Biochim. Biophys. Acta, 1773, pp. 1311-1340
  • Colman-Lerner, A., Gordon, A., Serra, E., Chin, T., Resnekov, O., Endy, D., Pesce, C.G., Brent, R., Regulated cell-to-cell variation in a cell-fate decision system (2005) Nature, 437, pp. 699-706
  • Costanzo, M., Nishikawa, J.L., Tang, X., Millman, J.S., Schub, O., Breitkreuz, K., Dewar, D., Tyers, M., CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast (2004) Cell, 117, pp. 899-913
  • De Bruin, R.A., McDonald, W.H., Kalashnikova, T.I., Yates, J., III, Wittenberg, C., Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5 (2004) Cell, 117, pp. 887-898
  • Di Talia, S., Wang, H., Skotheim, J.M., Rosebrock, A.P., Futcher, B., Cross, F.R., Daughter-specific transcription factors regulate cell size control in budding yeast (2009) PLoS Biol., 7, p. e1000221
  • Doncic, A., Skotheim, J.M., Feedforward regulation ensures stability and rapid reversibility of a cellular state (2013) Mol. Cell, 50, pp. 856-868
  • Doncic, A., Falleur-Fettig, M., Skotheim, J.M., Distinct interactions select and maintain a specific cell fate (2011) Mol. Cell, 43, pp. 528-539
  • Doncic, A., Eser, U., Atay, O., Skotheim, J.M., An algorithm to automate yeast segmentation and tracking (2013) PLoS ONE, 8, p. e57970
  • Errede, B., Ammerer, G., STE12, a protein involved in cell-type-specific transcription and signal transduction in yeast, is part of protein-DNA complexes (1989) Genes Dev., 3, pp. 1349-1361
  • Evangelista, M., Blundell, K., Longtine, M.S., Chow, C.J., Adames, N., Pringle, J.R., Peter, M., Boone, C., Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis (1997) Science, 276, pp. 118-122
  • Forney, G.D., Viterbi Algorithm (1973) IEEE, 61, pp. 268-278
  • Garí, E., Volpe, T., Wang, H., Gallego, C., Futcher, B., Aldea, M., Whi3 binds the mRNA of the G1 cyclin CLN3 to modulate cell fate in budding yeast (2001) Genes Dev., 15, pp. 2803-2808
  • Garrenton, L.S., Braunwarth, A., Irniger, S., Hurt, E., Künzler, M., Thorner, J., Nucleus-specific and cell cycle-regulated degradation of mitogen-activated protein kinase scaffold protein Ste5 contributes to the control of signaling competence (2009) Mol. Cell. Biol., 29, pp. 582-601
  • Gartner, A., Jovanović, A., Jeoung, D.I., Bourlat, S., Cross, F.R., Ammerer, G., Pheromone-dependent G1 cell cycle arrest requires Far1 phosphorylation, but may not involve inhibition of Cdc28-Cln2 kinase, in vivo (1998) Mol. Cell. Biol., 18, pp. 3681-3691
  • Hao, N., Nayak, S., Behar, M., Shanks, R.H., Nagiec, M.J., Errede, B., Hasty, J., Dohlman, H.G., Regulation of cell signaling dynamics by the protein kinase-scaffold Ste5 (2008) Mol. Cell, 30, pp. 649-656
  • Hartwell, L.H., Culotti, J., Pringle, J.R., Reid, B.J., Genetic control of the cell division cycle in yeast (1974) Science, 183, pp. 46-51
  • Henchoz, S., Chi, Y., Catarin, B., Herskowitz, I., Deshaies, R.J., Peter, M., Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast (1997) Genes Dev., 11, pp. 3046-3060
  • Holmes, K.J., Klass, D.M., Guiney, E.L., Cyert, M.S., Whi3, an S. Cerevisiae RNA-binding protein, is a component of stress granules that regulates levels of its target mRNAs (2013) PLoS ONE, 8, p. e84060
  • Howell, A.S., Jin, M., Wu, C.F., Zyla, T.R., Elston, T.C., Lew, D.J., Negative feedback enhances robustness in the yeast polarity establishment circuit (2012) Cell, 149, pp. 322-333
  • Jeoung, D.I., Oehlen, L.J., Cross, F.R., Cln3-associated kinase activity in Saccharomyces cerevisiae is regulated by the mating factor pathway (1998) Mol. Cell. Biol., 18, pp. 433-441
  • Kholodenko, B.N., Hancock, J.F., Kolch, W., Signalling ballet in space and time (2010) Nat. Rev. Mol. Cell Biol., 11, pp. 414-426
  • Laabs, T.L., Markwardt, D.D., Slattery, M.G., Newcomb, L.L., Stillman, D.J., Heideman, W., ACE2 is required for daughter cell-specific G1 delay in Saccharomyces cerevisiae (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 10275-10280
  • Lang, G.I., Murray, A.W., Botstein, D., The cost of gene expression underlies a fitness trade-off in yeast (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 5755-5760
  • Lanker, S., Valdivieso, M.H., Wittenberg, C., Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation (1996) Science, 271, pp. 1597-1601
  • Lee, M.J., Ye, A.S., Gardino, A.K., Heijink, A.M., Sorger, P.K., Macbeath, G., Yaffe, M.B., Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks (2012) Cell, 149, pp. 780-794
  • Malleshaiah, M.K., Shahrezaei, V., Swain, P.S., Michnick, S.W., The scaffold protein Ste5 directly controls a switch-like mating decision in yeast (2010) Nature, 465, pp. 101-105
  • McKinney, J.D., Chang, F., Heintz, N., Cross, F.R., Negative regulation of FAR1 at the Start of the yeast cell cycle (1993) Genes Dev., 7, pp. 833-843
  • Moore, S.A., Yeast cells recover from mating pheromone alpha factor-induced division arrest by desensitization in the absence of alpha factor destruction (1984) J. Biol. Chem., 259, pp. 1004-1010
  • Nagiec, M.J., Dohlman, H.G., Checkpoints in a yeast differentiation pathway coordinate signaling during hyperosmotic stress (2012) PLoS Genet., 8, p. e1002437
  • Nern, A., Arkowitz, R.A., A Cdc24p-Far1p-Gbetagamma protein complex required for yeast orientation during mating (1999) J. Cell Biol., 144, pp. 1187-1202
  • Nern, A., Arkowitz, R.A., Nucleocytoplasmic shuttling of the Cdc42p exchange factor Cdc24p (2000) J. Cell Biol., 148, pp. 1115-1122
  • Oehlen, L.J., McKinney, J.D., Cross, F.R., Ste12 and Mcm1 regulate cell cycle-dependent transcription of FAR1 (1996) Mol. Cell. Biol., 16, pp. 2830-2837
  • Oehlen, L.J., Jeoung, D.I., Cross, F.R., Cyclin-specific START events and the G1-phase specificity of arrest by mating factor in budding yeast (1998) Mol. Gen. Genet., 258, pp. 183-198
  • Peter, M., Herskowitz, I., Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1 (1994) Science, 265, pp. 1228-1231
  • Peter, M., Gartner, A., Horecka, J., Ammerer, G., Herskowitz, I., FAR1 links the signal transduction pathway to the cell cycle machinery in yeast (1993) Cell, 73, pp. 747-760
  • Pope, P.A., Bhaduri, S., Pryciak, P.M., Regulation of Cyclin-Substrate Docking by a G1 Arrest Signaling Pathway and the Cdk Inhibitor Far1 (2014) Curr. Biol.
  • Pryciak, P.M., Huntress, F.A., Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gbetagamma complex underlies activation of the yeast pheromone response pathway (1998) Genes Dev., 12, pp. 2684-2697
  • Purvis, J.E., Karhohs, K.W., Mock, C., Batchelor, E., Loewer, A., Lahav, G., P53 dynamics control cell fate (2012) Science, 336, pp. 1440-1444
  • Qi, M., Elion, E.A., Formin-induced actin cables are required for polarized recruitment of the Ste5 scaffold and high level activation of MAPK Fus3 (2005) J. Cell Sci., 118, pp. 2837-2848
  • Raj, A., Van Den Bogaard, P., Rifkin, S.A., Van Oudenaarden, A., Tyagi, S., Imaging individual mRNA molecules using multiple singly labeled probes (2008) Nat. Methods, 5, pp. 877-879
  • Santos, S.D., Wollman, R., Meyer, T., Ferrell, Jr.J.E., Spatial positive feedback at the onset of mitosis (2012) Cell, 149, pp. 1500-1513
  • Shimada, Y., Gulli, M.P., Peter, M., Nuclear sequestration of the exchange factor Cdc24 by Far1 regulates cell polarity during yeast mating (2000) Nat. Cell Biol., 2, pp. 117-124
  • Shirayama, M., Tóth, A., Gálová, M., Nasmyth, K., APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5 (1999) Nature, 402, pp. 203-207
  • Skotheim, J.M., Di Talia, S., Siggia, E.D., Cross, F.R., Positive feedback of G1 cyclins ensures coherent cell cycle entry (2008) Nature, 454, pp. 291-296
  • Strickfaden, S.C., Winters, M.J., Ben-Ari, G., Lamson, R.E., Tyers, M., Pryciak, P.M., A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway (2007) Cell, 128, pp. 519-531
  • Takahashi, S., Pryciak, P.M., Membrane localization of scaffold proteins promotes graded signaling in the yeast MAP kinase cascade (2008) Curr. Biol., 18, pp. 1184-1191
  • Thomson, T.M., Benjamin, K.R., Bush, A., Love, T., Pincus, D., Resnekov, O., Yu, R.C., Brent, R., Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 20265-20270
  • Torres, M.P., Clement, S.T., Cappell, S.D., Dohlman, H.G., Cell cycle-dependent phosphorylation and ubiquitination of a G protein alpha subunit (2011) J. Biol. Chem., 286, pp. 20208-20216
  • Tyers, M., Futcher, B., Far1 and Fus3 link the mating pheromone signal transduction pathway to three G1-phase Cdc28 kinase complexes (1993) Mol. Cell. Biol., 13, pp. 5659-5669
  • Valtz, N., Peter, M., Herskowitz, I., FAR1 is required for oriented polarization of yeast cells in response to mating pheromones (1995) J. Cell Biol., 131, pp. 863-873
  • Yang, Q., Ferrell, Jr.J.E., The Cdk1-APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch (2013) Nat. Cell Biol., 15, pp. 519-525
  • Yosef, N., Regev, A., Impulse control: Temporal dynamics in gene transcription (2011) Cell, 144, pp. 886-896
  • Yu, R.C., Pesce, C.G., Colman-Lerner, A., Lok, L., Pincus, D., Serra, E., Holl, M., Brent, R., Negative feedback that improves information transmission in yeast signalling (2008) Nature, 456, pp. 755-761
  • Amberg, D.C., Burke, D., Strathern, J.N., (2005) Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual, 2005 Edn, , Cold Spring Harbor Laboratory Cold Spring Harbor Laboratory Press Cold Spring Harbor, N.Y
  • Amberg, D.C., Burke, D.J., Strathern, J.N., (2005) Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual, , CSHL Press
  • Drongelen, W., (2008) Signal Processing for Neuroscientists, , Academic Press
  • Ghaemmaghami, S., Huh, W.K., Bower, K., Howson, R.W., Belle, A., Dephoure, N., O'Shea, E.K., Weissman, J.S., Global analysis of protein expression in yeast (2003) Nature, 425, pp. 737-741
  • Jorgensen, P., Edgington, N.P., Schneider, B.L., Rupes, I., Tyers, M., Futcher, B., The size of the nucleus increases as yeast cells grow (2007) Mol. Biol. Cell, 18, pp. 3523-3532
  • Keenan, T.M., Hsu, C.H., Folch, A., Microfluidic "jets" for generating steady-state gradients of soluble molecules on open surfaces (2006) Appl. Phys. Lett., 89, p. 114103
  • Longtine, M.S., McKenzie, A., III, Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., Pringle, J.R., Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae (1998) Yeast, 14, pp. 953-961
  • Orr-Weaver, T.L., Szostak, J.W., Multiple, tandem plasmid integration in Saccharomyces cerevisiae (1983) Mol. Cell. Biol., 3, pp. 747-749
  • Su, H., Bidère, N., Zheng, L., Cubre, A., Sakai, K., Dale, J., Salmena, L., Lenardo, M., Requirement for caspase-8 in NF-kappaB activation by antigen receptor (2005) Science, 307, pp. 1465-1468
  • Ventura, A.C., Bush, A., Vasen, G., Goldín, M.A., Burkinshaw, B., Bhattacharjee, N., Folch, A., Colman-Lerner, A., Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range (2014) Proc. Natl. Acad. Sci. USA, 111, pp. E3860-E3869
  • Wen, W., Meinkoth, J.L., Tsien, R.Y., Taylor, S.S., Identification of a signal for rapid export of proteins from the nucleus (1995) Cell, 82, pp. 463-473

Citas:

---------- APA ----------
Doncic, A., Atay, O., Valk, E., Grande, A., Bush, A., Vasen, G., Colman-Lerner, A.,..., Skotheim, J.M. (2015) . Compartmentalization of a bistable switch enables memory to cross a feedback-driven transition. Cell, 160(6), 1182-1195.
http://dx.doi.org/10.1016/j.cell.2015.02.032
---------- CHICAGO ----------
Doncic, A., Atay, O., Valk, E., Grande, A., Bush, A., Vasen, G., et al. "Compartmentalization of a bistable switch enables memory to cross a feedback-driven transition" . Cell 160, no. 6 (2015) : 1182-1195.
http://dx.doi.org/10.1016/j.cell.2015.02.032
---------- MLA ----------
Doncic, A., Atay, O., Valk, E., Grande, A., Bush, A., Vasen, G., et al. "Compartmentalization of a bistable switch enables memory to cross a feedback-driven transition" . Cell, vol. 160, no. 6, 2015, pp. 1182-1195.
http://dx.doi.org/10.1016/j.cell.2015.02.032
---------- VANCOUVER ----------
Doncic, A., Atay, O., Valk, E., Grande, A., Bush, A., Vasen, G., et al. Compartmentalization of a bistable switch enables memory to cross a feedback-driven transition. Cell. 2015;160(6):1182-1195.
http://dx.doi.org/10.1016/j.cell.2015.02.032