Artículo

Croci, D.O.; Cerliani, J.P.; Dalotto-Moreno, T.; Méndez-Huergo, S.P.; Mascanfroni, I.D.; Dergan-Dylon, S.; Toscano, M.A.; Caramelo, J.J.; García-Vallejo, J.J.; Ouyang, J.; Mesri, E.A.; Junttila, M.R.; Bais, C.; Shipp, M.A.; Salatino, M.; Rabinovich, G.A. "Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors" (2014) Cell. 156(4):744-758
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The clinical benefit conferred by vascular endothelial growth factors (VEGF)-targeted therapies is variable, and tumors from treated patients eventually reinitiate growth. Here, we identify a glycosylation-dependent pathway that compensates for the absence of cognate ligand and preserves angiogenesis in response to VEGF blockade. Remodeling of the endothelial cell (EC) surface glycome selectively regulated binding of galectin-1 (Gal1), which upon recognition of complex N-glycans on VEGFR2, activated VEGF-like signaling. Vessels within anti-VEGF-sensitive tumors exhibited high levels of α2-6-linked sialic acid, which prevented Gal1 binding. In contrast, anti-VEGF refractory tumors secreted increased Gal1 and their associated vasculature displayed glycosylation patterns that facilitated Gal1-EC interactions. Interruption of β1-6GlcNAc branching in ECs or silencing of tumor-derived Gal1 converted refractory into anti-VEGF-sensitive tumors, whereas elimination of α2-6-linked sialic acid conferred resistance to anti-VEGF. Disruption of the Gal1-N-glycan axis promoted vascular remodeling, immune cell influx and tumor growth inhibition. Thus, targeting glycosylation-dependent lectin-receptor interactions may increase the efficacy of anti-VEGF treatment. PaperFlick © 2014 Elsevier Inc.

Registro:

Documento: Artículo
Título:Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors
Autor:Croci, D.O.; Cerliani, J.P.; Dalotto-Moreno, T.; Méndez-Huergo, S.P.; Mascanfroni, I.D.; Dergan-Dylon, S.; Toscano, M.A.; Caramelo, J.J.; García-Vallejo, J.J.; Ouyang, J.; Mesri, E.A.; Junttila, M.R.; Bais, C.; Shipp, M.A.; Salatino, M.; Rabinovich, G.A.
Filiación:Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Buenos Aires, Argentina
Laboratorio de Biología Estructural y Celular, Fundación Instituto Leloir, CONICET, 1405 Buenos Aires, Argentina
Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081BT Amsterdam, Netherlands
Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, United States
Department of Microbiology and Immunology, Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL 33136, United States
Genentech, Inc., South San Francisco, CA 94080, United States
Laboratorio de Glicómica, Departamento de Química Biológica, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Angiogenesis Inhibitors; Animals; Anoxia; Endothelial Cells; Galectin 1; Glycosylation; Humans; Mice; Neoplasms; Neovascularization, Pathologic; Receptors, Mitogen; Vascular Endothelial Growth Factors; galectin 1; lectin receptor; ligand; sialic acid; vasculotropin; vasculotropin antibody; vasculotropin receptor 2; angiogenesis; animal experiment; animal model; animal tissue; Article; breast metastasis; cancer inhibition; controlled study; depletion; drug efficacy; endothelium cell; gene silencing; glycosylation; human; human cell; hypoxia; immunocompetent cell; kidney carcinoma; liver cell carcinoma; metastatic colorectal cancer; mouse; neoplasm; non small cell lung cancer; nonhuman; protein binding; protein secretion; vascularization
Año:2014
Volumen:156
Número:4
Página de inicio:744
Página de fin:758
DOI: http://dx.doi.org/10.1016/j.cell.2014.01.043
Título revista:Cell
Título revista abreviado:Cell
ISSN:00928674
CODEN:CELLB
CAS:galectin 1, 258495-34-0; vasculotropin, 127464-60-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00928674_v156_n4_p744_Croci

Referencias:

  • Bais, C., Wu, X., Yao, J., Yang, S., Crawford, Y., McCutcheon, K., Tan, C., Eastham-Anderson, J., PlGF blockade does not inhibit angiogenesis during primary tumor growth (2010) Cell, 141, pp. 166-177
  • Banh, A., Zhang, J., Cao, H., Bouley, D.M., Kwok, S., Kong, C., Giaccia, A.J., Le, Q.T., Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis (2011) Cancer Res., 71, pp. 4423-4431
  • Benedito, R., Roca, C., Sörensen, I., Adams, S., Gossler, A., Fruttiger, M., Adams, R.H., The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis (2009) Cell, 137, pp. 1124-1135
  • Bergers, G., Hanahan, D., Modes of resistance to anti-angiogenic therapy (2008) Nat. Rev. Cancer, 8, pp. 592-603
  • Carmeliet, P., Jain, R.K., Molecular mechanisms and clinical applications of angiogenesis (2011) Nature, 473, pp. 298-307
  • Chung, A.S., Ferrara, N., Developmental and pathological angiogenesis (2011) Annu. Rev. Cell Dev. Biol., 27, pp. 563-584
  • Chung, A.S., Wu, X., Zhuang, G., Ngu, H., Kasman, I., Zhang, J., Vernes, J.M., Peale, F.V., An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy (2013) Nat. Med., 19, pp. 1114-1123
  • Contessa, J.N., Bhojani, M.S., Freeze, H.H., Rehemtulla, A., Lawrence, T.S., Inhibition of N-linked glycosylation disrupts receptor tyrosine kinase signaling in tumor cells (2008) Cancer Res., 68, pp. 3803-3809
  • Coussens, L.M., Zitvogel, L., Palucka, A.K., Neutralizing tumor-promoting chronic inflammation: A magic bullet? (2013) Science, 339, pp. 286-291
  • Croci, D.O., Salatino, M., Rubinstein, N., Cerliani, J.P., Cavallin, L.E., Leung, H.J., Ouyang, J., Domaica, C.I., Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma (2012) J. Exp. Med., 209, pp. 1985-2000
  • D'Haene, N., Sauvage, S., Maris, C., Adanja, I., Le Mercier, M., Decaestecker, C., Baum, L., Salmon, I., VEGFR1 and VEGFR2 involvement in extracellular galectin-1- and galectin-3-induced angiogenesis (2013) PLoS ONE, 8, p. 67029
  • Dalotto-Moreno, T., Croci, D.O., Cerliani, J.P., Martinez-Allo, V.C., Dergan-Dylon, S., Méndez-Huergo, S.P., Stupirski, J.C., Toscano, M.A., Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease (2013) Cancer Res., 73, pp. 1107-1117
  • Delgado, V.M., Nugnes, L.G., Colombo, L.L., Troncoso, M.F., Fernández, M.M., Malchiodi, E.L., Frahm, I., Rabinovich, G.A., Modulation of endothelial cell migration and angiogenesis: A novel function for the "tandem-repeat" lectin galectin-8 (2011) FASEB J., 25, pp. 242-254
  • Dennis, J.W., Nabi, I.R., Demetriou, M., Metabolism, cell surface organization, and disease (2009) Cell, 139, pp. 1229-1241
  • Ebos, J.M., Lee, C.R., Kerbel, R.S., Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy (2009) Clin. Cancer Res., 15, pp. 5020-5025
  • Ellis, L.M., Hicklin, D.J., VEGF-targeted therapy: Mechanisms of anti-tumour activity (2008) Nat. Rev. Cancer, 8, pp. 579-591
  • Fischer, C., Jonckx, B., Mazzone, M., Zacchigna, S., Loges, S., Pattarini, L., Chorianopoulos, E., Carmeliet, P., Anti-PlGF Inhibits Growth of VEGF(R)-Inhibitor-Resistant Tumors without Affecting Healthy Vessels (2007) Cell, 131 (3), pp. 463-475. , DOI 10.1016/j.cell.2007.08.038, PII S0092867407011014
  • Fu, J., Gerhardt, H., McDaniel, J.M., Xia, B., Liu, X., Ivanciu, L., Ny, A., McGee, S., Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice (2008) J. Clin. Invest., 118, pp. 3725-3737
  • Garcia-Vallejo, J.J., Van Dijk, W., Van Het Hof, B., Van Die, I., Engelse, M.A., Van Hinsbergh, V.W.M., Gringhuis, S.I., Activation of human endothelial cells by tumor necrosis factor-α results in profound changes in the expression of glycosylation-related genes (2006) Journal of Cellular Physiology, 206 (1), pp. 203-210. , DOI 10.1002/jcp.20458
  • Gourlaouen, M., Welti, J.C., Vasudev, N.S., Reynolds, A.R., Essential role for endocytosis in the growth factor-stimulated activation of ERK1/2 in endothelial cells (2013) J. Biol. Chem., 288, pp. 7467-7480
  • Granovsky, M., Fata, J., Pawling, J., Muller, W.J., Khokha, R., Dennis, J.W., Suppression of tumor growth and metastasis in Mgat5-deficient mice (2000) Nature Medicine, 6 (3), pp. 306-312. , DOI 10.1038/73163
  • Hart, G.W., Copeland, R.J., Glycomics hits the big time (2010) Cell, 143, pp. 672-676
  • Hsieh, S.H., Ying, N.W., Wu, M.H., Chiang, W.F., Hsu, C.L., Wong, T.Y., Jin, Y.T., Chen, Y.L., Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells (2008) Oncogene, 27 (26), pp. 3746-3753. , DOI 10.1038/sj.onc.1211029, PII 1211029
  • Kitazume, S., Imamaki, R., Ogawa, K., Komi, Y., Futakawa, S., Kojima, S., Hashimoto, Y., Taniguchi, N., Alpha2,6-sialic acid on platelet endothelial cell adhesion molecule (PECAM) regulates its homophilic interactions and downstream antiapoptotic signaling (2010) J. Biol. Chem., 285, pp. 6515-6521
  • Laderach, D.J., Gentilini, L.D., Giribaldi, L., Delgado, V.C., Nugnes, L., Croci, D.O., Al Nakouzi, N., Mazza, O., A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease (2013) Cancer Res., 73, pp. 86-96
  • Lanahan, A.A., Hermans, K., Claes, F., Kerley-Hamilton, J.S., Zhuang, Z.W., Giordano, F.J., Carmeliet, P., Simons, M., VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis (2010) Dev. Cell, 18, pp. 713-724
  • Le, Q.-T., Shi, G., Cao, H., Nelson, D.W., Wang, Y., Chen, E.Y., Zhao, S., Koong, A.C., Galectin-1: A link between tumor hypoxia and tumor immune privilege (2005) Journal of Clinical Oncology, 23 (35), pp. 8932-8941. , DOI 10.1200/JCO.2005.02.0206
  • Lee, S., Chen, T.T., Barber, C.L., Jordan, M.C., Murdock, J., Desai, S., Ferrara, N., Iruela-Arispe, M.L., Autocrine VEGF Signaling Is Required for Vascular Homeostasis (2007) Cell, 130 (4), pp. 691-703. , DOI 10.1016/j.cell.2007.06.054, PII S0092867407009051
  • Lopez-Lucendo, M.F., Solis, D., Andre, S., Hirabayashi, J., Kasai, K.-I., Kaltner, H., Gabius, H.-J., Romero, A., Growth-regulatory human galectin-1: Crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding (2004) Journal of Molecular Biology, 343 (4), pp. 957-970. , DOI 10.1016/j.jmb.2004.08.078, PII S0022283604010782
  • Markowska, A.I., Jefferies, K.C., Panjwani, N., Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells (2011) J. Biol. Chem., 286, pp. 29913-29921
  • Mathieu, V., De Lassalle, E.M., Toelen, J., Mohr, T., Bellahcène, A., Van Goietsenoven, G., Verschuere, T., De Vleeschouwer, S., Galectin-1 in melanoma biology and related neo-angiogenesis processes (2012) J. Invest. Dermatol., 132, pp. 2245-2254
  • Nangia-Makker, P., Honjo, Y., Sarvis, R., Akahani, S., Hogan, V., Pienta, K.J., Raz, A., Galectin-3 induces endothelial cell morphogenesis and angiogenesis (2000) American Journal of Pathology, 156 (3), pp. 899-909
  • Ohtsubo, K., Marth, J.D., Glycosylation in Cellular Mechanisms of Health and Disease (2006) Cell, 126 (5), pp. 855-867. , DOI 10.1016/j.cell.2006.08.019, PII S0092867406010865
  • Olsson, A.K., Dimberg, A., Kreuger, J., Claesson-Welsh, L., VEGF receptor signalling - In control of vascular function (2006) Nat. Rev. Mol. Cell Biol., 7, pp. 359-371
  • Potente, M., Gerhardt, H., Carmeliet, P., Basic and therapeutic aspects of angiogenesis (2011) Cell, 146, pp. 873-887
  • Rabinovich, G.A., Croci, D.O., Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer (2012) Immunity, 36, pp. 322-335
  • Rubinstein, N., Alvarez, M., Zwirner, N.W., Toscano, M.A., Ilarregui, J.M., Bravo, A., Mordoh, J., Rabinovich, G.A., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection: A potential mechanism of tumor-immune privilege (2004) Cancer Cell, 5 (3), pp. 241-251. , DOI 10.1016/S1535-6108(04)00024-8, PII S1535610804000248
  • Sacchettini, J.C., Baum, L.G., Brewer, C.F., Multivalent protein - Carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction (2001) Biochemistry, 40 (10), pp. 3009-3015. , DOI 10.1021/bi002544j
  • Saito, T., Miyoshi, E., Sasai, K., Nakano, N., Eguchi, H., Honke, K., Taniguchi, N., A secreted type of β1,6-N-acetylglucosaminyltransferase V (GnT-V) induces tumor angiogenesis without mediation of glycosylation. A novel function of GnT-V distinct from the original glycosyltransferase activity (2002) Journal of Biological Chemistry, 277 (19), pp. 17002-17008. , DOI 10.1074/jbc.M200521200
  • Shojaei, F., Wu, X., Malik, A.K., Zhong, C., Baldwin, M.E., Schanz, S., Fuh, G., Ferrara, N., Tumor refractoriness to anti-VEGF treatment is mediated by CD11b +Gr1+ myeloid cells (2007) Nature Biotechnology, 25 (8), pp. 911-920. , DOI 10.1038/nbt1323, PII NBT1323
  • Shojaei, F., Lee, J.H., Simmons, B.H., Wong, A., Esparza, C.O., Plumlee, P.A., Feng, J., Christensen, J.G., HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors (2010) Cancer Res., 70, pp. 10090-10100
  • Singh, M., Lima, A., Molina, R., Hamilton, P., Clermont, A.C., Devasthali, V., Thompson, J.D., Ho, C.C.K., Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models (2010) Nat. Biotechnol., 28, pp. 585-593
  • Song, Y., Aglipay, J.A., Bernstein, J.D., Goswami, S., Stanley, P., The bisecting GlcNAc on N-glycans inhibits growth factor signaling and retards mammary tumor progression (2010) Cancer Res., 70, pp. 3361-3371
  • Thijssen, V.L.J.L., Postel, R., Brandwijk, R.J.M.G.E., Dings, R.P.M., Nesmelova, I., Satijn, S., Verhofstad, N., Griffioen, A.W., Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (43), pp. 15975-15980. , DOI 10.1073/pnas.0603883103
  • Thijssen, V.L., Barkan, B., Shoji, H., Aries, I.M., Mathieu, V., Deltour, L., Hackeng, T.M., Griffioen, A.W., Tumor cells secrete galectin-1 to enhance endothelial cell activity (2010) Cancer Res., 70, pp. 6216-6224
  • Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Croci, D.O., Correale, J., Hernandez, J.D., Zwirner, N.W., Rabinovich, G.A., Differential glycosylation of TH1, TH2 and T H-17 effector cells selectively regulates susceptibility to cell death (2007) Nature Immunology, 8 (8), pp. 825-834. , DOI 10.1038/ni1482, PII NI1482
  • Varki, A., Kannagi, R., Toole, B.P., Glycosylation changes in cancer (2009) Essentials of Glycobiology, , A. Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, G.W. Hart, M.E. Etzler, Second Edition Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY
  • Willhauck-Fleckenstein, M., Moehler, T.M., Merling, A., Pusunc, S., Goldschmidt, H., Schwartz-Albiez, R., Transcriptional regulation of the vascular endothelial glycome by angiogenic and inflammatory signalling (2010) Angiogenesis, 13, pp. 25-42
  • Xu, D., Fuster, M.M., Lawrence, R., Esko, J.D., Heparan sulfate regulates VEGF165- and VEGF121-mediated vascular hyperpermeability (2011) J. Biol. Chem., 286, pp. 737-745
  • Yokoe, S., Takahashi, M., Asahi, M., Seung, H.L., Li, W., Osumi, D., Miyoshi, E., Taniguchi, N., The Asn418-linked N-glycan of ErbB3 plays a crucial role in preventing spontaneous heterodimerization and tumor promotion (2007) Cancer Research, 67 (5), pp. 1935-1942. , DOI 10.1158/0008-5472.CAN-06-3023
  • Barrionuevo, P., Beigier-Bompadre, M., Ilarregui, J.M., Toscano, M.A., Bianco, G.A., Isturiz, M.A., Rabinovich, G.A., A novel function for galectin-1 at the crossroad of innate and adaptive immunity: Galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic EMK-dependent pathway (2007) Journal of Immunology, 178 (1), pp. 436-445
  • Fernandez, G.C., Ilarregui, J.M., Rubel, C.J., Toscano, M.A., Gomez, S.A., Bompadre, M.B., Isturiz, M.A., Palermo, M.S., Galectin-3 and soluble fibrinogen act in concert to modulate neutrophil activation and survival: Involvement of alternative MAPK pathways (2005) Glycobiology, 15 (5), pp. 519-527. , DOI 10.1093/glycob/cwi026
  • Ilarregui, J.M., Croci, D.O., Bianco, G.A., Toscano, M.A., Salatino, M., Vermeulen, M.E., Geffner, J.R., Rabinovich, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat. Immunol., 10, pp. 981-991
  • Kalay, H., Ambrosini, M., Van Berkel, P.H., Parren, P.W., Van Kooyk, Y., García Vallejo, J.J., Online nanoliquid chromatography-mass spectrometry and nanofluorescence detection for high-resolution quantitative N-glycan analysis (2012) Anal. Biochem., 423, pp. 153-162
  • Ouyang, J., Juszczynski, P., Rodig, S.J., Green, M.R., O'Donnell, E., Currie, T., Armant, M., Rabinovich, G.A., Viral induction and targeted inhibition of galectin-1 in EBV+ posttransplant lymphoproliferative disorders (2011) Blood, 117, pp. 4315-4322
  • Starossom, S.C., Mascanfroni, I.D., Imitola, J., Cao, L., Raddassi, K., Hernandez, S.F., Bassil, R., Delacour, D., Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration (2012) Immunity, 37, pp. 249-263
  • Voss, P.G., Gray, R.M., Dickey, S.W., Wang, W., Park, J.W., Kasai, K., Hirabayashi, J., Wang, J.L., Dissociation of the carbohydrate-binding and splicing activities of galectin-1 (2008) Arch. Biochem. Biophys., 478, pp. 18-25

Citas:

---------- APA ----------
Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Méndez-Huergo, S.P., Mascanfroni, I.D., Dergan-Dylon, S., Toscano, M.A.,..., Rabinovich, G.A. (2014) . Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell, 156(4), 744-758.
http://dx.doi.org/10.1016/j.cell.2014.01.043
---------- CHICAGO ----------
Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Méndez-Huergo, S.P., Mascanfroni, I.D., Dergan-Dylon, S., et al. "Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors" . Cell 156, no. 4 (2014) : 744-758.
http://dx.doi.org/10.1016/j.cell.2014.01.043
---------- MLA ----------
Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Méndez-Huergo, S.P., Mascanfroni, I.D., Dergan-Dylon, S., et al. "Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors" . Cell, vol. 156, no. 4, 2014, pp. 744-758.
http://dx.doi.org/10.1016/j.cell.2014.01.043
---------- VANCOUVER ----------
Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Méndez-Huergo, S.P., Mascanfroni, I.D., Dergan-Dylon, S., et al. Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell. 2014;156(4):744-758.
http://dx.doi.org/10.1016/j.cell.2014.01.043