Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We clarify the relation between the algebraic conditions that must be satisfied by the reaction constants in general (mass-action) kinetics systems for the existence of detailed or complex balancing equilibria. These systems have a wide range of applications in chemistry and biology. Their main properties have been set by Horn, Jackson and Feinberg. We expect to extend our point of view to the study of qualitative features of the dynamical behavior of chemical interactions in molecular systems biology. © 2010 Society for Mathematical Biology.

Registro:

Documento: Artículo
Título:How Far is Complex Balancing from Detailed Balancing?
Autor:Dickenstein, A.; Millán, M.P.
Filiación:Dto. de Matemática, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pab. I, C1428EGA Buenos Aires, Argentina
Palabras clave:Complex balancing; Detailed balancing; General kinetics; Mass action; algorithm; article; biological model; chemical model; kinetics; metabolism; physiology; Algorithms; Kinetics; Metabolic Networks and Pathways; Models, Biological; Models, Chemical
Año:2011
Volumen:73
Número:4
Página de inicio:811
Página de fin:828
DOI: http://dx.doi.org/10.1007/s11538-010-9611-7
Título revista:Bulletin of Mathematical Biology
Título revista abreviado:Bull. Math. Biol.
ISSN:00928240
CODEN:BMTBA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00928240_v73_n4_p811_Dickenstein

Referencias:

  • Angeli, D., de Leenheer, P., Sontag, E.D., A Petri net approach to the study of persistence in chemical reaction networks (2007) Math. Biosci., 210, pp. 598-618
  • Burack, W.R., Sturgill, T., The activating dual phosphorylation of MAPK by MEK is nonprocessive (1997) Biochemistry, 36 (20), pp. 5929-5933
  • Craciun, G., Feinberg, M., Multiple equilibria in complex chemical reaction networks: II. The species-reactions graph (2006) SIAM J. Appl. Math., 66 (4), pp. 1321-1338
  • Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B., Toric dynamical systems (2009) J. Symb. Comput., 44, pp. 1551-1565
  • Craciun, G., Tang, Y., Feinberg, M., Understanding bistability in complex enzymedriven reaction networks (2006) Proc. Natl. Acad. Sci. USA, 103 (23), pp. 8697-8702
  • Ederer, M., Gilles, E.D., Thermodynamically feasible kinetic models of reaction networks (2007) Biophys. J., 92 (6), pp. 1846-1857
  • Eisenbud, D., Sturmfels, B., Binomial ideals (1996) Duke Math. J., 84 (1), pp. 1-45
  • Feinberg, M., Complex balancing in general kinetic systems (1972) Arch. Ration. Mech. Anal., 49, pp. 187-194
  • Feinberg, M., (1979) Lectures on chemical reaction networks., , http://www.che.eng.ohio-state.edu/~FEINBERG/LecturesOnReactionNetworks, Notes of lectures given at the Mathematics Research Center of the University of Wisconsin in 1979, available at:
  • Feinberg, M., Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity (1989) Chem. Eng. Sci., 44 (9), pp. 1819-1827
  • Feinberg, M., The existence and uniqueness of steady states for a class of chemical reaction networks (1995) Arch. Ration. Mech. Anal., 132 (4), pp. 311-370
  • Ferrell Jr., J.E., Bhatt, R., Mechanistic studies of the dual phosphorylation of mitogenactivated protein kinase (1997) J. Biol. Chem., 272 (30), pp. 19008-19016
  • Gatermann, K., Wolfrum, M., Bernstein's second theorem and Viro's method for sparse polynomial systems in chemistry (2005) Adv. Appl. Math., 34 (2), pp. 252-294
  • Gnacadja, G., Univalent positive polynomial maps and the equilibrium state of chemical networks of reversible binding reactions (2009) Adv. Appl. Math., 43 (4), pp. 394-414
  • Gunawardena, J., (2003) Chemical reaction network theory for in-silico biologists (Technical report)., , http://vcp.med.harvard.edu/papers/crnt.pdf, Available at:
  • Gunawardena, J., Distributivity and processivity in multisite phosphorylation can be distinguished through steady-state invariants (2007) Biophys. J., 93, pp. 3828-3834
  • Gunawardena, J., Models in systems biology: the parameter problem and the meanings of robustness (2009) Elements of Computational Systems Biology, , H. Lodhi and S. Muggleton (Eds.), New York: Wiley
  • Horn, F., Necessary and sufficient conditions for complex balancing in chemical kinetics (1972) Arch. Ration. Mech. Anal., 49, pp. 172-186
  • Horn, F., Stability and complex balancing in mass-action systems with three short complexes (1973) Proc. R. Soc. Lond. Ser. A, 334, pp. 331-342
  • Horn, F., The dynamics of open reaction systems (1974) Mathematical Aspects of Chemical and Biochemical Problems and Quantum Chemistry (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1974), VIII, pp. 125-137. , SIAM-AMS proc, Providence: Am. Math. Soc
  • Horn, F., Jackson, R., General mass action kinetics (1972) Arch. Ration. Mech. Anal., 47, pp. 81-116
  • King, E.L., Altman, C., A schematic method of deriving the rate laws for enzyme-catalyzed reactions (1956) J. Phys. Chem., 60 (10), pp. 1375-1378
  • Manrai, A., Gunawardena, J., The geometry of multisite phosphorylation (2008) Biophys. J., 95, pp. 5533-5543
  • Markevich, N.I., Hoek, J.B., Kholodenko, B.N., Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades (2004) J. Cell Biol., 164 (3), pp. 353-359
  • Schuster, S., Schuster, R., A generalization of Wegscheider's condition. Implications for properties of steady states and for quasi-steady-state approximation (1989) J. Math. Chem., 3, pp. 25-42
  • Shinar, G., Alon, U., Feinberg, M., Sensitivity and robustness in chemical reaction networks (2009) SIAM J. Appl. Math., 69 (4), pp. 977-998
  • Sontag, E., Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction (2001) IEEE Trans. Autom. Control, 46, pp. 1028-1047
  • Stanley, R.P., (1999) Enumerative Combinatorics: Vol. 2, 62. , Cambridge studies in advanced mathematicsWith a foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin, Cambridge: Cambridge University Press
  • Vlad, M.O., Ross, J., Thermodynamically based constraints for rate coefficients of large biochemical networks (2009) WIREs Syst. Biol. Med., 1 (3), pp. 348-358

Citas:

---------- APA ----------
Dickenstein, A. & Millán, M.P. (2011) . How Far is Complex Balancing from Detailed Balancing?. Bulletin of Mathematical Biology, 73(4), 811-828.
http://dx.doi.org/10.1007/s11538-010-9611-7
---------- CHICAGO ----------
Dickenstein, A., Millán, M.P. "How Far is Complex Balancing from Detailed Balancing?" . Bulletin of Mathematical Biology 73, no. 4 (2011) : 811-828.
http://dx.doi.org/10.1007/s11538-010-9611-7
---------- MLA ----------
Dickenstein, A., Millán, M.P. "How Far is Complex Balancing from Detailed Balancing?" . Bulletin of Mathematical Biology, vol. 73, no. 4, 2011, pp. 811-828.
http://dx.doi.org/10.1007/s11538-010-9611-7
---------- VANCOUVER ----------
Dickenstein, A., Millán, M.P. How Far is Complex Balancing from Detailed Balancing?. Bull. Math. Biol. 2011;73(4):811-828.
http://dx.doi.org/10.1007/s11538-010-9611-7