Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Aedes aegypti is the main vector for dengue and urban yellow fever. It is extended around the world not only in the tropical regions but also beyond them, reaching temperate climates. Because of its importance as a vector of deadly diseases, the significance of its distribution in urban areas and the possibility of breeding in laboratory facilities, Aedes aegypti is one of the best-known mosquitoes. In this work the biology of Aedes aegypti is incorporated into the framework of a stochastic population dynamics model able to handle seasonal and total extinction as well as endemic situations. The model incorporates explicitly the dependence with temperature. The ecological parameters of the model are tuned to the present populations of Aedes aegypti in Buenos Aires city, which is at the border of the present day geographical distribution in South America. Temperature thresholds for the mosquito survival are computed as a function of average yearly temperature and seasonal variation as well as breeding site availability. The stochastic analysis suggests that the southern limit of Aedes aegypti distribution in South America is close to the 15°C average yearly isotherm, which accounts for the historical and current distribution better than the traditional criterion of the winter (July) 10°C isotherm. © 2006 Springer Science+Business Media, Inc.

Registro:

Documento: Artículo
Título:A stochastic population dynamics model for Aedes aegypti: Formulation and application to a city with temperate climate
Autor:Otero, M.; Solari, H.G.; Schweigmann, N.
Filiación:Department of Physics, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Genetics and Ecology, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Aedes aegypti; Mathematical ecology; Population dynamics; Stochastic model; Temperate climate; Aedes; animal; Argentina; article; biological model; dengue; Dengue virus; disease carrier; disease transmission; female; growth, development and aging; microbiology; population dynamics; season; statistical model; statistics; urban population; virology; Aedes; Animals; Argentina; Dengue; Dengue Virus; Female; Insect Vectors; Models, Biological; Models, Statistical; Population Dynamics; Seasons; Stochastic Processes; Urban Population; Aedes aegypti
Año:2006
Volumen:68
Número:8
Página de inicio:1945
Página de fin:1974
DOI: http://dx.doi.org/10.1007/s11538-006-9067-y
Título revista:Bulletin of Mathematical Biology
Título revista abreviado:Bull. Math. Biol.
ISSN:00928240
CODEN:BMTBA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00928240_v68_n8_p1945_Otero

Referencias:

  • Andersson, H., Britton, T., Stochastic epidemic models and their statistical analysis (2000) Lecture Notes in Statistics, 151. , Springer-Verlag, Berlin
  • Aparicio, J.P., Solari, H.G., Population dynamics: A poissonian approximation and its relation to the langevin process (2001) Phys. Rev. Lett., 86, pp. 4183-4186
  • Arrivillaga, J., Barrera, R., Food as a limiting factor for aedes aegypti in water-storage containers (2004) J. Vector Ecol., 29, pp. 11-20
  • Bar-Zeev, M., The effect of density on the larvae of a mosquito and its influence on fecundity (1957) Bull. Res. Council Israel, 6 B, pp. 220-228
  • Bar-Zeev, M., The effect of temperature on the growth rate and survival of the immature stages of aedes aegypti (1958) Bull. Entomol. Res., 49, pp. 157-163
  • Campos, R.E., Macia, A., Observaciones biologicas de una poblacion natural de aedes aegypti (diptera: Culicidae) en la provincia de buenos aires, argentina (1996) Rev. Soc. Entomol. Argent., 55 (1-4), pp. 67-72
  • Carbajo, A.E., Schweigmann, N., Curto, S.I., De Garín, A., Bejarán, R., Dengue transmission risk maps of argentina (2001) Trop. Med. Int. Health, 6 (3), pp. 170-183
  • Carter, H.R., (1931) Yellow Fever: An Epidemiological and Historical Study of Its Place of Origin, , The Williams & Wilkins Company, Baltimore
  • Christophers, R., (1960) Aedes aegypti (L.), the Yellow Fever Mosquito, , Cambridge Univ. Press., Cambridge
  • De Garín, A.B., Bejarán, R.A., Carbajo, A.E., De Casas, S.C., Schweigmann, N.J., Atmospheric control of aedes aegypti populations in buenos aires (argentina) and its variability (2000) Int. J. Biometerol., 44, pp. 148-156
  • Depinay, J.-M.O., Mbogo, C.M., Killeen, G., Knols, B., Beier, J., Carlson, J., Dushoff, J., McKenzie, F.E., A simulation model of african anopheles ecology and population dynamics for the analysis of malaria transmision (2004) Malaria J., 3 (29), pp. 1-21
  • Domínguez, C., Almeida, F.F.L., Almirón, W., Dinámica poblacional de aedes aegypti (diptera: Culicidae) en córdoba capital (2000) Revista de la Sociedad Entomológica de Argentina, 59, pp. 41-50
  • Dye, C., Intraspecific competition amongst larval aedes aegypti: Food exploitation or chemical interference (1982) Ecol. Entomol., 7, pp. 39-46
  • Ethier, S.N., Kurtz, T.G., (1986) Markov Processes, , John Wiley and Sons, New York
  • Fay, R.W., The biology and bionomics of aedes aegypti in the laboratory (1964) Mosq. News., 24, pp. 300-308
  • Focks, D.A., Haile, D.C., Daniels, E., Moun, G.A., Dynamics life table model for aedes aegypti: Analysis of the literature and model development (1993) J. Med. Entomol., 30, pp. 1003-1018
  • Focks, D.A., Haile, D.C., Daniels, E., Mount, G.A., Dynamic life table model for aedes aegypti: Simulations results (1993) J. Med. Entomol., 30, pp. 1019-1029
  • Dengue enfermedad emergente (1998) Fundación de Estudios Infectológicos, 1 (1), pp. 1-6. , http://www.funcei.org.ar
  • Dengue enfermedad emergente (1999) Fundación de Estudios Infectológicos, 2 (2), pp. 1-8. , http://www.funcei.org.ar
  • Dengue enfermedad emergente (1999) Fundación de Estudios Infectológicos, 2 (1), pp. 1-12. , http://www.funcei.org.ar
  • Gleiser, R.M., Urrutia, J., Gorla, D.E., Effects of crowding on populations of aedes albifasciatus larvae under laboratory conditions (2000) Entomologia Experimentalis et Applicata, 95, pp. 135-140
  • Hill, G.W., On the part of motion of the lunar perigee which is function of the mean motions of the sun and moon (1877) Acta Math., 8, p. 1
  • Horsfall, W.R., (1955) Mosquitoes: Their Bionomics and Relation to Disease, , Ronald, New York, USA
  • Király, A., Jánosi, I.M., Stochastic modelling of daily temperature fluctuations (2002) Phys. Rev. E, 65, p. 051102
  • Kurtz, T.G., Solutions of ordinary differential equations as limits of pure jump markov processes (1970) J. Appl. Prob., 7, pp. 49-58
  • Kurtz, T.G., Limit theorems for sequences of jump processes approximating ordinary differential equations (1971) J. Appl. Prob., 8, pp. 344-356
  • Legates, D.R., Willmott, C.J., Mean seasonal and spatial variability in global surface air temperature (1990) Theor. Appl. Climatology, 41, pp. 11-21
  • Livdahl, T.P., Koenekoop, R.K., Futterweit, S.G., The complex hatching response of aedes eggs to larval density (1984) Ecol. Entomol., 9, pp. 437-442
  • (1964) Campaña de Erradicacion del Aedes Aegypti en la Repblica Argentina, , Ministerio de Asistencia Social y Salud Publica, A., Informe final. Buenos Aires
  • Morales, M.A., Monteros, M., Fabbri, C.M., Garay, M.E., Introini, V., Ubeid, M.C., Baroni, P.G., Enria, D.A., Riesgo de aparicin de dengue hemorrágico en la argentina (2004) II Congreso Internacional Dengue Y Fiebre Amarilla, , http://www.cidfa2004.sld.cu, La Habana, Cuba
  • Nayar, J.K., Sauerman, D.M., The effects of nutrition on survival and fecundity in florida mosquitoes. Part 3. Utilization of bood and sugar for fecundity (1975) J. Med. Entomol., 12, pp. 220-225
  • Perillo, G.M.E., Piccolo, M.C., Qué es el estuario de bahía blanca? (2004) Ciencia Hoy, 14 (81), pp. 8-15. , http://www.ciencia-hoy.retina.ar, on line at
  • Powell, J.A., Jenkis, J.L., Seasonal temperature alone can synchronize life cycles (2000) Bull. Math. Biol., 62, pp. 977-998
  • Rueda, L.M., Patel, K.J., Axtell, R.C., Stinner, R.E., Temperature-dependent development and survival rates of culex quinquefasciatus and aedes aegypti (diptera: Culicidae) (1990) J. Med. Entomol., 27, pp. 892-898
  • Schoofield, R.M., Sharpe, P.J.H., Magnuson, C.E., Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory (1981) J. Theor. Biol., 88, pp. 719-731
  • Schuster, H.G., (1984) Deterministic Chaos, , Physik Verlag, Weinheim
  • Schweigmann, N., Boffi, R., Aedes aegypti y aedes albopictus: Situación entomológica en la región (1998) Temas de Zoonosis Y Enfermedades Emergentes, Segundo Cong. Argent. de Zoonosis Y Primer Cong. Argent. Y Lationoamer. de Enf. Emerg. Y Asociación Argentina de Zoonosis, pp. 259-263. , Buenos Aires
  • Sharpe, P.J.H., DeMichele, D.W., Reaction kinetics of poikilotherm development (1977) J. Theor. Biol., 64, pp. 649-670
  • Solari, H., Natiello, M., Mindlin, B., (1996) Nonlinear Dynamics: A Two-way Trip from Physics to Math, , Institute of Physics, Bristol
  • Solari, H., Natiello, M., Poisson approximation to density dependent stochastic processes: A numerical implementation and test (2003) Proceedings of the Workshop Dynamical Systems from Number Theory to Probability-2, 6, pp. 79-94. , Khrennikov, A. (Ed.), Mathematical Modelling in Physics, Engineering and Cognitive Sciences. Växjö University Press, Växjö
  • Solari, H.G., Natiello, M.A., Stochastic population dynamics: The poisson approximation (2003) Phys. Rev. E, 67, p. 031918
  • Southwood, T.R.E., Murdie, G., Yasuno, M., Tonn, R.J., Reader, P.M., Studies on the life budget of aedes aegypti in wat samphaya bangkok thailand (1972) Bull. W.H.O., 46, pp. 211-226
  • Subra, R., Mouchet, J., The regulation of preimaginal populations of aedes aegypti (l.) (diptera: Culicidae) on the kenya coast. ii. Food as a main regulatory factor (1984) Ann. Trop. Med. Parasitol., 78, pp. 63-70
  • Trpis, M., Dry season survival of aedes aegypti eggs in various breeding sites in the dar salaam area, tanzania (1972) Bull. WHO, 47, pp. 433-437
  • Vezzani, C., Velázquez, S.T., Schweigmann, N., Seasonal pattern of abundance of aedes aegypti (diptera: Culicidae) in buenos aires city, argentina (2004) Memor Inst Oswaldo Cruz, 99, pp. 351-356
  • (1998) Dengue Hemorrhagic Fever. Diagnosis, Treatment, Prevention and Control, , WHO, World Health Organization, Ginebra, Suiza
  • Wiggins, S., Global Bifurcations and Chaos. No. 73 (1988) Applied Mathematical Science
  • Wiggins, S., (1990) Introduction to Applied Nonlinear Dynamical Systems and Chaos, , Springer, New York

Citas:

---------- APA ----------
Otero, M., Solari, H.G. & Schweigmann, N. (2006) . A stochastic population dynamics model for Aedes aegypti: Formulation and application to a city with temperate climate. Bulletin of Mathematical Biology, 68(8), 1945-1974.
http://dx.doi.org/10.1007/s11538-006-9067-y
---------- CHICAGO ----------
Otero, M., Solari, H.G., Schweigmann, N. "A stochastic population dynamics model for Aedes aegypti: Formulation and application to a city with temperate climate" . Bulletin of Mathematical Biology 68, no. 8 (2006) : 1945-1974.
http://dx.doi.org/10.1007/s11538-006-9067-y
---------- MLA ----------
Otero, M., Solari, H.G., Schweigmann, N. "A stochastic population dynamics model for Aedes aegypti: Formulation and application to a city with temperate climate" . Bulletin of Mathematical Biology, vol. 68, no. 8, 2006, pp. 1945-1974.
http://dx.doi.org/10.1007/s11538-006-9067-y
---------- VANCOUVER ----------
Otero, M., Solari, H.G., Schweigmann, N. A stochastic population dynamics model for Aedes aegypti: Formulation and application to a city with temperate climate. Bull. Math. Biol. 2006;68(8):1945-1974.
http://dx.doi.org/10.1007/s11538-006-9067-y