Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The classic example of the not-well-understood rapid change of tectonic plate motion is the increase and then decrease of the convergence rate between the Nazca and South America plates during the past 25-20 m.y. that coincided with the growth of the Andes Mountains. Currently, the decrease in convergence rate is explained either by the increasing load of the Andes or by the appearance of fl at slab segments beneath South America. Here, we present an alternative view based on a thermomechanical self-consistent (gravity driven) model of Nazca plate subduction. We explain the changes in the convergence rate as a natural consequence of the Nazca plate penetration into the transition zone and lower mantle after long-term oblique subduction of the Farallon plate. The model is consistent with seismic tomographic images of the Nazca plate beneath South America. Our model also shows that the presence of the Andes does not signifi cantly affect the convergence rate between the Nazca and South America plates. © 2012 Geological Society of America.

Registro:

Documento: Artículo
Título:Why has the Nazca plate slowed since the Neogene?
Autor:Quinteros, J.; Sobolev, S.V.
Filiación:Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany
Department of Computer Sciences, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
Institute of Physics of the Earth, Russian Academy of Sciences, Moscow 123995, Russian Federation
Palabras clave:Convergence rates; Lower mantle; Natural consequences; Nazca plate; Neo genes; Oblique subduction; Seismic tomographic images; South America; Tectonic plates; Thermo-mechanical; Transition zones; View-based; Geology; Tomography; Nazca plate; Neogene; plate motion; seismic tomography; subduction zone; transition zone; Andes
Año:2013
Volumen:41
Número:1
Página de inicio:31
Página de fin:34
DOI: http://dx.doi.org/10.1130/G33497.1
Título revista:Geology
Título revista abreviado:Geology
ISSN:00917613
CODEN:GLGYB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00917613_v41_n1_p31_Quinteros

Referencias:

  • Capitanio, F.A., Faccenna, C., Zlotnik, S., Stegman, D.R., Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline (2011) Nature, 480, pp. 83-86. , doi:10.1038/nature10596
  • Contenti, S., Gu, Y.J., Okeler, A., Sacchi, M.D., Shear wave reflectivity imaging of the Nazca-South America subduction zone: Stagnant slab in the mantle transition zone? (2012) Geophysical Research Letters, 39, pp. L02310. , doi:10.1029/2011GL050064
  • Faccenna, C., Funiciello, F., Giardini, D., Lucente, P., Episodic back-arc extension during restricted mantle convection in the Central Mediterranean (2001) Earth and Planetary Science Letters, 187, pp. 105-116. , doi:10.1016/S0012-821X(01)00280-1
  • Fukao, Y., Widiyantoro, S., Obayashi, M., Stagnant slabs in the upper and lower mantle transition region (2001) Reviews of Geophysics, 39, pp. 291-323. , doi:10.1029/1999RG000068
  • Gerya, T.V., Connolly, J.A.D., Yuen, D.A., Why is terrestrial subduction one-sided? (2008) Geology, 36, pp. 43-46. , doi:10.1130/G24060A.1
  • Iaffaldano, G., Bunge, H.-P., Strong plate coupling along the Nazca-South America convergent margin (2008) Geology, 36, pp. 443-446. , doi:10.1130/G24489A.1
  • Iaffaldano, G., Bunge, H.-P., Dixon, T.H., Feedback between mountain belt growth and plate convergence (2006) Geology, 34, pp. 893-896. , doi:10.1130/G22661.1
  • Kay, S.M., Ramos, V.A., Dickinson, W.R., Backbone of the Americas (2009), p. 278. , eds., Shallow subduction, plateau uplift, and ridge and terrane collision: Geological Society of America Memoir 204; Liu, K.H., Gao, S.S., Silver, P.G., Zhang, Y., Mantle layering across central South America (2003) Journal of Geophysical Research, 108, p. 2510. , doi:10.1029/2002JB002208
  • Lonsdale, P., Creation of the Cocos and Nazca plates by fission of the Farallon plate (2005) Tectonophysics, 404, pp. 237-264. , doi:10.1016/j.tecto.2005.05.011
  • Martinod, J., Husson, L., Roperch, P., Guillaume, B., Espurt, N., Horizontal subduction zones, convergence velocity and the building of the Andes (2010) Earth and Planetary Science Letters, 299, pp. 299-309. , doi:10.1016/j.epsl.2010.09.010
  • Müller, R.D., Sdrolias, M., Gaina, C., Roest, W.R., Age, spreading rates, and spreading asymmetry of the world's ocean crust (2008) Geochemistry Geophysics Geosystems, 9, pp. Q04006. , doi:10.1029/2007GC001743
  • Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H., Ramos, V., Strecker, M., Wigger, P., The Andes-Active subduction orogeny: Frontiers in Earth Sciences (2006), p. 570. , eds. New York, Springer; Oncken, O., Hindle, D., Kley, J., Elger, K., Victor, P., Schemmann, K., Deformation of the Central Andean upper plate system-Facts, fiction, and constraints for plateau models (2006) The Andes-Active subduction orogeny: Frontiers in Earth Sciences, pp. 3-27. , Oncken, O., et al., eds. New York, Springer
  • Popov, A.A., Sobolev, S.V., Slim3d: A tool for three-dimensional thermo-mechanical modeling of the lithospheric deformation with elasto-visco-plastic rheology (2008) Physics of the Earth Interiors, 171, pp. 55-75. , doi:10.1016/j.pepi.2008.03.007
  • Quinteros, J., Sobolev, S.V., Constraining kinetics of metastable olivine in Marianas slab from seismic observations and dynamic models (2012) Tectonophysics, 526-529, pp. 48-55. , doi:10.1016/j.tecto.2011.11.005
  • Quinteros, J., Sobolev, S.V., Popov, A.A., Viscosity in transition zone and lower mantle: Implications for slab penetration (2010) Geophysical Research Letters, 37, pp. L09307. , doi:10.1029/2010GL043140
  • Schellart, W.P., Freeman, J., Stegman, D.R., Moresi, L., May, D., Evolution and diversity of subduction zones controlled by slab width (2007) Nature, 446, pp. 308-311. , doi:10.1038/nature05615
  • Sdrolias, M., Mueller, R.D., Controls on back-arc basin formation (2006) Geochemistry Geophysics Geosystems, 7, pp. Q04016. , doi:10.1029/2005GC001090
  • Sobolev, S.V., Babeyko, A.Y., What drives orogeny in the Andes? (2005) Geology, 33, pp. 617-620. , doi:10.1130/G21557.1
  • Somoza, R., Updated Nazca (Farallon)-South America relative motions during the last 40 My: Implications for mountain building in the central Andean region (1998) Journal of South American Earth Sciences, 11, pp. 211-215. , doi:10.1016/S0895-9811(98)00012-1
  • Yáñez, G., Cembrano, J., Role of viscous plate coupling in the late Tertiary Andean tectonics (2004) Journal of Geophysical Research, 109, pp. B02407. , doi:10.1029/2003JB002494

Citas:

---------- APA ----------
Quinteros, J. & Sobolev, S.V. (2013) . Why has the Nazca plate slowed since the Neogene?. Geology, 41(1), 31-34.
http://dx.doi.org/10.1130/G33497.1
---------- CHICAGO ----------
Quinteros, J., Sobolev, S.V. "Why has the Nazca plate slowed since the Neogene?" . Geology 41, no. 1 (2013) : 31-34.
http://dx.doi.org/10.1130/G33497.1
---------- MLA ----------
Quinteros, J., Sobolev, S.V. "Why has the Nazca plate slowed since the Neogene?" . Geology, vol. 41, no. 1, 2013, pp. 31-34.
http://dx.doi.org/10.1130/G33497.1
---------- VANCOUVER ----------
Quinteros, J., Sobolev, S.V. Why has the Nazca plate slowed since the Neogene?. Geology. 2013;41(1):31-34.
http://dx.doi.org/10.1130/G33497.1