Artículo

Hales, B.; Strutton, P.G.; Saraceno, M.; Letelier, R.; Takahashi, T.; Feely, R.; Sabine, C.; Chavez, F. "Satellite-based prediction of pCO 2 in coastal waters of the eastern North Pacific" (2012) Progress in Oceanography. 103:1-15
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Continental margin carbon cycling is complex, highly variable over a range of space and time scales, and forced by multiple physical and biogeochemical drivers. Predictions of globally significant air-sea CO 2 fluxes in these regions have been extrapolated based on very sparse data sets. We present here a method for predicting coastal surface-water pCO 2 from remote-sensing data, based on self organizing maps (SOMs) and a nonlinear semi-empirical model of surface water carbonate chemistry. The model used simple empirical relationships between carbonate chemistry (total dissolved carbon dioxide (TCO2) and alkalinity (T Alk )) and satellite data (sea surface temperature (SST) and chlorophyll (Chl)). Surface-water CO 2 partial pressure (pCO 2 ) was calculated from the empirically-predicted TCO2 and T Alk . This directly incorporated the inherent nonlinearities of the carbonate system, in a completely mechanistic manner. The model's empirical coefficients were determined for a target study area of the central North American Pacific continental margin (22-50°N, within 370km of the coastline), by optimally reproducing a set of historical observations paired with satellite data. The model-predicted pCO 2 agreed with the highly variable observations with a root mean squared (RMS) deviation of <20μatm, and with a correlation coefficient of >0.8 (r=0.81; r 2 =0.66). This level of accuracy is a significant improvement relative to that of simpler models that did not resolve the biogeochemical sub-regions or that relied on linear dependences on input parameters. Air-sea fluxes based on these pCO 2 predictions and satellite-based wind speed measurements suggest that the region is a ∼14TgCyr -1 sink for atmospheric CO 2 over the 1997-2005 period, with an approximately equivalent uncertainty, compared with a ∼0.5TgCyr -1 source predicted by a recent bin-averaging and interpolation-based estimate for the same area. © 2012 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Satellite-based prediction of pCO 2 in coastal waters of the eastern North Pacific
Autor:Hales, B.; Strutton, P.G.; Saraceno, M.; Letelier, R.; Takahashi, T.; Feely, R.; Sabine, C.; Chavez, F.
Filiación:Oregon State University College of Oceanic and Atmospheric Sciences, Corvallis, OR 97331, United States
Centro de Investigaciones del Mar y la Atmosfera, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Departamento de Ciencias de la Atmósfera y de los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, United States
NOAA Pacific Marine Environmental Laboratory, Seattle, WA 98115, United States
Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, United States
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
The Australian Research Council Centre of Excellence for Climate System Science, Australia
Palabras clave:Air sea flux; Atmospheric CO; Carbon cycling; Carbonate system; Coastal waters; Continental margin; Correlation coefficient; Dissolved carbon dioxide; Eastern north pacific; Empirical coefficients; Empirical relationships; Historical observation; Input parameter; Linear dependence; North American; Root mean squared; Satellite data; Sea surface temperature (SST); Semiempirical models; Space and time; Sparse data sets; Study areas; Sub-regions; Wind speed measurement; Alkalinity; Biogeochemistry; Carbonation; Chlorophyll; Forecasting; Remote sensing; Satellites; Self organizing maps; Surface waters; Uncertainty analysis; Carbon dioxide; air-sea interaction; alkalinity; biogeochemistry; carbon cycle; carbon dioxide; coastal zone; continental margin; remote sensing; satellite data; sea surface temperature; surface water; timescale; uncertainty analysis; wind velocity; Pacific Ocean; Pacific Ocean (North)
Año:2012
Volumen:103
Página de inicio:1
Página de fin:15
DOI: http://dx.doi.org/10.1016/j.pocean.2012.03.001
Título revista:Progress in Oceanography
Título revista abreviado:Prog. Oceanogr.
ISSN:00796611
CODEN:POCNA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00796611_v103_n_p1_Hales

Referencias:

  • Aitkenhead, J.A., McDowell, W.H., Soil C/N as a predictor of annual riverine DOC flux at local and global scales (2000) Global Biogeochemical Cycles, 14, pp. 127-138
  • Bates, N.R., Best, M.H.P., Hansell, D.A., Spatio-temporal distribution of dissolved inorganic carbon and net community production in the Chukchi and Beaufort Seas (2005) Deep-Sea Research II, 52, pp. 3303-3323
  • Bauer, J., Goni, M., McKee, B., North American rivers and Estuaries (2008), p. 110. , Hales, B., Cai, W.-J., Mitchell, B.G., Sabine, C.L., Schofield, O. (Eds.), North American Continental Margins: A Synthesis and Planning Workshop. Report of the North American Continental Margins Working Group for the US Carbon Cycle Scientific Steering Group and Interagency Working Group. US Carbon Cycle Science Program, Washington, DC; Bianchi, A., Bianucci, L., Piola, A., Ruiz-Pino, D., Schloss, I., Poisson, A., Balestrini, C., Vertical stratification and air-sea CO 2 fluxes in the Patagonian shelf (2005) Journal of Geophysical Research, 110, pp. C07003
  • Borges, A.V., Do we have enough pieces of the jigsaw to integrate CO 2 fluxes in the coastal ocean? (2005) Estuaries, 28, pp. 3-27
  • Borges, A.V., Delille, B., Frankignoulle, M., Budgeting sinks and sources of CO 2 in the coastal ocean: diversity of ecosystems counts (2005) Geophysical Research Letters, 32, pp. L14601
  • Borges, A.V., Schiettecatte, L.-S., Abril, G., Delille, B., Gazeau, F., Carbon dioxide in European coastal waters, Estuarine (2006) Coastal and Shelf Science, 70, pp. 375-387
  • Bratbak, G., Heldal, M., Norland, S., Thingstad, T.F., Viruses as partners in spring bloom microbial trophodynamics (1990) Applied and Environmental Microbiology, 56, pp. 1400-1405
  • Cai, W.-J., Riverine inorganic carbon flux and rate of biological uptake in the Mississippi River plume (2003) Geophysical Research Letters, 30, p. 1032
  • Cai, W.-J., Estuarine and coastal ocean carbon paradox: CO 2 sinks or sites of terrestrial carbon incineration? (2011) Annual Review of Marine Science, 3, pp. 123-145
  • Cai, W.-J., Wang, Z., Wang, Y., The role of marsh-dominated heterotrophic continental margins in transport of CO 2 between the atmosphere, the land-sea interface and the ocean (2003) Geophysical Research Letters, 30, p. 1849
  • Cai, W.-J., Dai, M., Wang, Y., Air-sea exchange of carbon dioxide in ocean margins: a province based synthesis (2006) Geophysical Research Letters, 33, pp. L12603
  • Chavez, F., Takahashi, T., Cai, W.-J., Friedrich, G., Hales, B., Wanninkhof, R., Feely, R.A., Coastal oceans (2007) A Report by the US Climate Change Science Program and the Subcommittee on Global Change Research., p. 193. , http://www.climatescience.gov/Library/sap/sap2-2/final-report/default.htm, King, A.W.L. Dilling, Zimmerman, G.P., Fairman, D.M., Houghton, R.A., Marland, G.H., Rose, A.Z., Wilbanks, T.J. (Eds.), The First State of the Carbon Cycle Report (SOCCR): North American Carbon Budget and Implications for the Global Carbon Cycle. National Ocean and Atmospheric Administration, Climate Program Office, Silver Spring, MD, USA, 157-166
  • Chen, C.-T.A., Andreev, A., Kim, K.-R., Yamamoto, M., Roles of continental shelves and marginal seas in the biogeochemical cycles of the North Pacific Ocean (2004) Journal of Oceanography, 60, pp. 17-44
  • Cosca, C.E., Feely, R.A., Boutin, J., Etcheto, J., McPhaden, M.J., Chavez, F.P., Strutton, P.G., Seasonal and interannual CO2 fluxes for the central and eastern equatorial Pacific Ocean as determined from fCO2-SST relationships (2003); (1991) Biogeochemistry of Major World Rivers, , John Wiley & Sons Ltd, E.T. Degens, S. Kempe, J.E. Richey (Eds.)
  • DeGrandpre, M.D., Hammar, T.R., Olbu, G.J., Beatty, C.M., Air-sea CO 2 fluxes on the US Middle Atlantic Bight (2002) Deep-Sea Research II, 49, pp. 4355-4367
  • Dickson, A.G., Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15K (1990) Deep-Sea Research, 37, pp. 755-766
  • Dickson, A.G., Millero, F.J., A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater (1987) Deep-Sea Research, 34, pp. 1733-1743
  • d'Ovidio, F., De Monte, S., Alvain, S., Dandonneau, Y., Lévy, M., Fluid dynamical niches of phytoplankton types, 2010 (2010) Proceedings of the National Academy of Sciences of the United States of America
  • Ducklow, H.W., McAllister, S.L., The biogeochemistry of carbon dioxide in the coastal oceans (2005) The Global Coastal Ocean: Multiscale Interdisciplinary Processes. The Sea, vol. 13, , Harvard University Press, Cambridge, MA, K.H. Brink, A.R. Robinson (Eds.)
  • Dugdale, R.C., Wilkerson, F.P., Morel, A., Realization of new production in coastal upwelling areas: a means to compare relative performance (1990) Limnology and Oceanography, 35, pp. 822-829
  • Dugdale, R.C., Wilkerson, F.P., Hogue, V.E., Marchi, A., Nutrient controls on new production in the Bodega Bay, California, coastal upwelling plume (2006) Deep-Sea Research II, 53, pp. 3049-3062
  • Evans, W., Hales, B., Strutton, P., The seasonal cycle of surface ocean pCO2 on the Oregon shelf (2011) Journal of Geophysical Research Oceans, 116, pp. C05012. , http://dx.doi.org/10.1029/2010JC006625
  • Feely, R.A., Takahashi, T., Wanninkhof, R., McPhaden, M.J., Cosca, C.E., Sutherland, S.C., Carr, M.-E., Decadal variability of the air-sea CO 2 fluxes in the equatorial Pacific Ocean (2006) Journal of Geophysical Research C-Oceans, C08S90
  • Feely, R.A., Sabine, C.L., Hernandez-Ayon, J.M., Ianson, D., Hales, B., Evidence for upwelling of corrosive 'acidified' water onto the continental shelf (2008) Science, 320, pp. 1490-1492
  • Fennel, K., Wilkin, J., Previdi, M., Najjar, R., Denitrification effects on air-sea CO2 flux in the coastal ocean: Simulations for the Northwest North Atlantic (2008) Geophys Res. Lett., 35, pp. L24608
  • Fennel, K., Wilkin, J., Quantifying biological carbon export for the northwest North Atlantic continental shelves (2009) Geophys. Res. Lett., pp. L18605
  • Frankignoulle, M., Borges, A.V., European continental shelf as a significant sink for atmospheric carbon dioxide (2001) Global Biogeochemical Cycles, 15, pp. 569-576
  • Friederich, G.E., Chavez, F.P., Walz, P.M., Burczynski, M.G., Inorganic carbon in the central California upwelling system during the 1997-1999 El Niño-La Niña event (2002) Progress in Oceanography, 54, pp. 185-203
  • Friedrich, T., Oschlies, A., Neural network-based estimates of North Atlantic surface pCO 2 from satellite data: a methodological study (2009) Journal of Geophysical Research, 114, pp. C03020
  • Friedrich, T., Oschlies, A., Basin-scale pCO 2 maps estimated from ARGO float data:A model study (2009) Journal of Geophysical Research, 114, pp. C10012
  • Gruber, N., Frenzel, H., Doney, S.C., Marchesiello, P., McWilliams, J.C., Moisan, J.R., Oram, J., Stolzenbach, K.D., Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System (2006) Deep-Sea Research, 1, p. 53
  • Hales, B., Chipman, D., Takahashi, T., High-frequency measurement of partial pressure and total concentration of carbon dioxide in seawater using microporous hydrophobic membrane contactors (2004) Limnology and Oceanography: Methods, 2, pp. 356-364
  • Hales, B., Takahashi, T., Bandstra, L., Atmospheric CO 2 uptake by a coastal upwelling system (2005) Global Biogeochemical Cycles, 19
  • Hales, B., Cai, W.-J., Mitchell, B.G., Sabine, C.L., Schofield, O., (2008), p. 110. , (Eds.), North American Continental Margins: A Synthesis and Planning Workshop. Report of the North American Continental Margins Working Group for the US Carbon Cycle Scientific Steering Group and Interagency Working Group. US Carbon Cycle Science Program, Washington, DC; Hauri, C., Gruber, N., Alin, S., Fabry, V.J., Feely, R.A., Hales, B., Plattner, G.-K., Wheeler, P., Ocean acidification in the California Current system (2009) Oceanography, 22, pp. 60-71
  • Hedges, J.I., Keil, R.G., Benner, R., What happens to terrestrial organic matter in the ocean? (1997) Organic Geochemistry, 27, pp. 195-212
  • Ho, D.T., Law, C.S., Smith, M.J., Schlosser, P., Harvey, M., Hill, P., Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations (2006) Geophysical Research Letters, 33, pp. L16611
  • Ianson, D., Feely, R.A., Sabine, C.L., Juranek, L.W., Features of coastal upwelling regions that determine net air-sea CO 2 flux (2010) Journal of Oceanography, 65, pp. 677-687
  • Ittekkot, V., Laane, R.W.P.M., Fate of riverine particulate organic matter (1991) Biogeochemistry of Major World Rivers, , John Wiley & Sons Ltd, E.T. Degens, S. Kempe, J.E. Richey (Eds.)
  • Kavanaugh, M.T., Hales, B., Saraceno, M., Spitz, Y.H., White, A.E., Letelier, R.M., Towards a quantitative framework for pelagic seascape ecology Ecosystems., , submitted for publication
  • Kohonen, T., The self-organizing map (1990) Proceedings of IEEE, 78, pp. 1464-1480
  • Kohonen, T., (1995) Self-Organizing Maps. Springer Series in Information Sciences, 30. , Springer-Verlag, Berlin, Heidelberg, New York
  • Lagerloef, G., Colomb, F.R., Le Vine, D., Wentz, F., Yueh, S., Ruf, C., Lilly, J., Swift, C., The aquarius/SAC-D mission: designed to meet the salinity remote-sensing challenge (2008) Oceanography, 21, pp. 68-81
  • Lefevre, N., Watson, A.J., Watson, A.R., A comparison of multiple regression and neuralnetwork techniques for mapping in situ pCO 2 data (2005) Tellus, 57 B, pp. 375-384
  • Lohrenz, S.E., Cai, W.-J., Satellite ocean color assessment of air-sea fluxes of CO 2 in a river-dominated coastal margin (2006) Geophysical Research Letters, 33, pp. L01601
  • Longhurst, A.R., (2006) Ecological Geography of the Sea, p. 560. , Academic Press, (ISBN: 978-0-12-455521-1)
  • Mecklenburg, S., Kerr, Y., Font, J., Hahne, A., The Soil Moisture and Ocean Salinity (SMOS) Mission - an overview (2008) Geophysical Research, , (Abstracts 10, EGU2008-A-01922)
  • Mehrbach, C., Culberson, C., Hawley, J.E., Pytkowicz, R.M., Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure (1973) Limnology and Oceanography, 18, pp. 897-907
  • Meybeck, M., Vorosmarty, C., Global transfer of carbon by rivers (1999) Global Change Newsletter, 37, pp. 18-19
  • Park, G.H., Wanninkhof, R., Doney, S.C., Takahashi, T., Lee, K., Feely, R.A., Sabine, C.L., Trinanes, J., Variability of global net air-sea CO2 fluxes over the last three decades using empirical relationships (2010) Tellus, 62 B, pp. 352-368
  • Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., (1989) Numerical Recipes-The Art of Scientific Computing, , Cambridge University Press
  • Prieto, L., Ruiz, J., Echevarria, F., Garcia, C.M., Bartual, A., Galvez, J.A., Corzo, A., Macias, D., Scales and processes in the aggregation of diatom blooms: high time resolution and wide size range records in a mesocosm study (2002) Deep-Sea Research I, 49, pp. 1233-1253
  • Revelle, R., Suess, H.E., Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO 2 during the past decades (1957) Tellus, 9, pp. 18-27
  • Risien, C.M., Chelton, D.B., A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data (2008) Journal of Physical Oceanography, 38, pp. 2379-2413
  • Saraceno, M., Provost, C., Lebbah, M., Biophysical regions identification using an artificial neuronal network: a case study in the South Western Atlantic (2006) Advances in Space Research, 37 (2006), pp. 793-805
  • Schlunz, B., Schneider, R.R., Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux and burial rates (2000) International Journal of Earth Sciences, 88, pp. 599-606
  • Smith, S.V., Hollibaugh, J.T., Coastal metabolism and the oceanic organic carbon balance (1993) Reviews of Geophysics, 31, pp. 75-89
  • Spalding, M.D., Marine ecoregions of the world: a bioregionalization of coastal and shelf areas (2007) BioScience, 57, pp. 573-583
  • Takahashi, T., Olafsson, J., Goddard, J., Chipman, D.W., Sutherland, S.C., Seasonal variation of CO 2 and nutrients in the high-latitude surface oceans: a comparative study (1993) Global Biogeochemical Cycles, 7, pp. 843-878
  • Takahashi, T., Climatological mean and decadal change in surface ocean pCO 2 , and net sea-air CO 2 flux over the global oceans (2009) Deep-Sea Research
  • Telszewski, M., Chazottes, A., Schuster, U., Watson, A.J., Moulin, C., Bakker, D.C.E., Gonźalez-D́avila, M., Wanninkhof, R., Estimating the monthly pCO 2 distribution in the North Atlanticusing a self-organizing neural network (2009) Biogeosciences, 6, pp. 1405-1421
  • Thomas, H., Bozec, Y., Elkalay, K., de Baar, H.J.W., Enhanced open ocean storage of CO 2 from shelf sea pumping (2004) Science, 304, pp. 1005-1008
  • Tsunogai, S., Watanabe, S., Sato, T., Is there a " continental shelf pump" for the absorption of atmospheric CO 2 ? (1999) Tellus B, 51, pp. 701-712
  • Wanninkhof, R., Olsen, A., Triñanes, J., Air-sea CO 2 fluxes in the Caribbean Sea from 2002-2004 (2006) Journal of Marine Systems, 66, pp. 272-284
  • Weiss, R.F., Carbon dioxide in water and seawater: the solubility of a non-ideal gas (1974) Marine Chemistry, 2, pp. 203-215

Citas:

---------- APA ----------
Hales, B., Strutton, P.G., Saraceno, M., Letelier, R., Takahashi, T., Feely, R., Sabine, C.,..., Chavez, F. (2012) . Satellite-based prediction of pCO 2 in coastal waters of the eastern North Pacific. Progress in Oceanography, 103, 1-15.
http://dx.doi.org/10.1016/j.pocean.2012.03.001
---------- CHICAGO ----------
Hales, B., Strutton, P.G., Saraceno, M., Letelier, R., Takahashi, T., Feely, R., et al. "Satellite-based prediction of pCO 2 in coastal waters of the eastern North Pacific" . Progress in Oceanography 103 (2012) : 1-15.
http://dx.doi.org/10.1016/j.pocean.2012.03.001
---------- MLA ----------
Hales, B., Strutton, P.G., Saraceno, M., Letelier, R., Takahashi, T., Feely, R., et al. "Satellite-based prediction of pCO 2 in coastal waters of the eastern North Pacific" . Progress in Oceanography, vol. 103, 2012, pp. 1-15.
http://dx.doi.org/10.1016/j.pocean.2012.03.001
---------- VANCOUVER ----------
Hales, B., Strutton, P.G., Saraceno, M., Letelier, R., Takahashi, T., Feely, R., et al. Satellite-based prediction of pCO 2 in coastal waters of the eastern North Pacific. Prog. Oceanogr. 2012;103:1-15.
http://dx.doi.org/10.1016/j.pocean.2012.03.001