Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Organisms living in deserts and anhydrobiotic species are useful models for unraveling mechanisms used to overcome water loss. In this context, late embryogenesis abundant (LEA) proteins and sugars have been extensively studied for protection against desiccation stress and desiccation tolerance. This article aims to reappraise the current understanding of these molecules by focusing on converging contributions from biochemistry, molecular biology, and the use of biophysical tools. Such tools have greatly advanced the field by uncovering intriguing aspects of protein 3-D structure, such as folding upon stress. We summarize the current research on cellular responses against water deficit at the molecular level, considering both plausible water loss-sensing mechanisms and genes governing signal transduction pathways. Finally, we propose models that could guide future experimentation, for example, by concentrating on the behavior of selected proteins in living cells. © 2008 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:When cells lose water: Lessons from biophysics and molecular biology
Autor:Caramelo, J.J.; Iusem, N.D.
Filiación:Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas, 435 Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Departamento de Fisiología, Biología Molecular y Celular, e Instituto IFIByNE-CONICET, Facultad de Ciencias Exactas y Naturales, Argentina
Palabras clave:Abiotic stress; Desiccation; Drought; LEA proteins; Natively unfolded; water; biological model; biophysics; cell function; heat shock response; metabolism; molecular biology; physiology; review; Biophysics; Cell Physiological Phenomena; Heat-Shock Response; Models, Biological; Molecular Biology; Water
Año:2009
Volumen:99
Número:1
Página de inicio:1
Página de fin:6
DOI: http://dx.doi.org/10.1016/j.pbiomolbio.2008.10.001
Título revista:Progress in Biophysics and Molecular Biology
Título revista abreviado:Prog. Biophys. Mol. Biol.
ISSN:00796107
CODEN:PBIMA
CAS:water, 7732-18-5; Water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00796107_v99_n1_p1_Caramelo

Referencias:

  • Bernacchiaa, G., Furinib, A., Biochemical and molecular responses to water stress in resurrection plants (2004) Physiol. Plant., 121, pp. 175-181
  • Billi, D., Potts, M., Life and death of dried prokaryotes (2002) Res. Microbiol., 153, pp. 7-12
  • Blum, A., Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive? (2005) Aust. J. Agric. Res., 56, pp. 1159-1168
  • Brodribb, T.J., Holbrook, N.M., Stomatal closure during leaf dehydration, correlation with other leaf physiological traits (2003) Plant Physiol., 132, pp. 2166-2173
  • Brosché, M., Vinocur, B., Alatalo, E.R., Lamminmäki, A., Teichmann, T., Ottow, E.A., Djilianov, D., Kangasjärvi, J., Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert (2005) Genome Biol., 6, pp. R101
  • Boudet, J., Buitink, J., Hoekstra, F.A., Rogniaux, H., Larré, C., Satour, P., Leprince, O., Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance (2006) Plant Physiol., 140, pp. 1418-1436
  • Chaves, M.M., Oliveira, M.M., Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture (2004) J. Exp. Bot., 55, pp. 2365-2384
  • Cheah, M.T., Wachter, A., Sudarsan, N., Breaker, R.R., Control of alternative RNA splicing and gene expression by eukaryotic riboswitches (2007) Nature, 447, pp. 497-500
  • Cuming, A.C., Cho, S.H., Kamisugi, Y., Graham, H., Quatrano, R.S., Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss Physcomitrella patens (2007) New Phytol., 176, pp. 275-287
  • Dong, A., Prestrelski, S.J., Allison, S.D., Carpenter, J.F., Infrared spectroscopic studies of lyophilization-induced and temperature-induced protein aggregation (1995) J. Pharm. Sci., 84, pp. 415-424
  • França, M.B., Panek, A.D., Eleutherio, E.C., The role of cytoplasmic catalase in dehydration tolerance of Saccharomyces cerevisiae (2005) Cell Stress Chaperones, 10, pp. 167-170
  • França, M.B., Panek, A.D., Eleutherio, E.C., Oxidative stress and its effects during dehydration (2007) Comp. Biochem. Physiol. A Mol. Integ.r Physiol., 146, pp. 621-631
  • Frankel, N., Hasson, E., Iusem, N.D., Rossi, M.S., Adaptive evolution of the water stress-induced gene Asr2 in Lycopersicon species dwelling in arid habitats (2003) Mol. Biol. Evol., 20, pp. 1955-1962
  • Galmés, J., Pou, A., Alsina, M.M., Tomàs, M., Medrano, H., Flexas, J., Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status (2007) Planta, 226 (3), pp. 671-681
  • Gazanchian, A., Hajheidari, M., Sima, N.K., Salekdeh, G.H., Proteome response of Elymus elongatum to severe water stress and recovery (2007) J. Exp. Bot., 58, pp. 291-300
  • Gilles, G.J., Hines, K.M., Manfre, A.J., Marcotte Jr., W.R., A predicted N-terminal helical domain of a Group 1 LEA protein is required for protection of enzyme activity from drying (2007) Plant Physiol. Biochem., 45, pp. 389-399
  • Goldgur, Y., Rom, S., Ghirlando, R., Shkolnik, D., Shadrin, N., Konrad, Z., Bar-Zvi, D., Desiccation and zinc binding induce transition of tomato abscisic acid stress ripening 1, a water stress- and salt stress-regulated plant-specific protein, from unfolded to folded state (2007) Plant Physiol., 143, pp. 617-628
  • Goyal, K., Tisi, L., Basran, A., Browne, J., Burnell, A., Zurdo, J., Tunnacliffe, A., Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein (2003) J. Biol. Chem., 278, pp. 12977-12984
  • Goyal, K., Walton, L.J., Tunnacliffe, A., LEA proteins prevent protein aggregation due to water stress (2005) Biochem. J., 388, pp. 151-157
  • Heschel, M.S., Riginos, C., Mechanisms of selection for drought stress tolerance and avoidance in Impatiens capensis (Balsaminaceae) (2005) Am. J. Bot., 92, pp. 37-44
  • Hincha, D.K., Hagemann, M., Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms (2004) Biochem. J., 383, pp. 277-283
  • Hoekstra, F.A., Golovina, E.A., Buitink, J., Mechanisms of plant desiccation tolerance (2001) Trends Plant Sci., 6, pp. 431-438
  • Hundertmark, M., Hincha, D.K., LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana (2008) BMC Genom., 9, p. 118
  • Imai, T., Harano, Y., Kinoshita, M., Kovalenko, A., Hirata, F., Theoretical analysis on changes in thermodynamic quantities upon protein folding: essential role of hydration (2007) J. Chem. Phys., 126, p. 225102
  • Ishibashi, K., Aquaporin subfamily with unusual NPA boxes (2006) Biochim. Biophys. Acta, 1758 (8), pp. 989-993
  • Ishitani, M., Xiong, L., Lee, H., Stevenson, B., Zhu, J.K., HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis (1998) Plant Cell, 10, pp. 1151-1161
  • Jeanneau, M., Gerentes, D., Foueillassar, X., Zivy, M., Vidal, J., Toppan, A., Perez, P., Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC (2002) Biochimie, 84, pp. 1127-1135
  • Karaba, A., Dixit, S., Greco, R., Aharoni, A., Trijatmiko, K.R., Marsch-Martinez, N., Krishnan, A., Pereira, A., Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene (2007) Proc. Natl. Acad. Sci., USA, 104, pp. 15270-15275
  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K., Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor (1999) Nat. Biotechnol., 17, pp. 287-291
  • Kasuga, M., Miura, S., Shinozaki, K., Yamaguchi-Shinozaki, K., A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer (2004) Plant Cell Physiol., 45, pp. 346-350
  • Knight, C.A., Vogel, H., Kroymann, J., Shumate, A., Witsenboer, H., Mitchell-Olds, T., Expression profiling and local adaptation of Boechera holboellii populations for water use efficiency across a naturally occurring water stress gradient (2006) Mol. Ecol., 15 (5), pp. 1229-1237
  • Koster, K., Glass formation and desiccation tolerance in seeds (1991) Plant Physiol., 96, pp. 302-304
  • Lee, K., Tirasophon, W., Shen, X., Michalak, M., Prywes, R., Okada, T., Yoshida, H., Kaufman, R.J., IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response (2002) Genes Dev., 16, pp. 452-466
  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K., Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis (1998) Plant Cell, 10, pp. 1391-1406
  • Liu, D., Zhang, X., Cheng, Y., Takano, T., Liu, S., rHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.) (2006) Plant Physiol. Biochem., 44, pp. 380-386
  • Marris, E., Water: more crop per drop (2008) Nature, 452, pp. 273-277
  • Martinez, I.M., Chrispeels, M.J., Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes (2003) Plant Cell, 15, pp. 561-576
  • Maskin, L., Gudesblat, G.E., Moreno, J.E., Carrari, F.O., Frankel, N., Sambade, A., Rossi, M., Iusem, N.D., Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum) (2001) Plant Sci., 161, pp. 739-746
  • Maskin, L., Frankel, N., Gudesblat, G., Demergasso, M.J., Pietrasanta, L.I., Iusem, N.D., Dimerization and DNA-binding of ASR1, a small hydrophilic protein abundant in plant tissues suffering from water loss (2007) Biochem. Biophys. Res. Commun., 352, pp. 831-835
  • Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M., Tsien, R.Y., Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin (1997) Nature, 388, pp. 882-887
  • Mowla, S.B., Cuypers, A., Driscoll, S.P., Kiddle, G., Thomson, J., Foyer, C.H., Theodoulou, F.L., Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance (2006) Plant J., 48, pp. 743-756
  • Oldenhof, H., Wolkers, W.F., Bowman, J.L., Tablin, F., Crowe, J.H., Freezing and desiccation tolerance in the moss Physcomitrella patens: an in situ Fourier transform infrared spectroscopic study (2006) Biochim. Biophys. Acta, 1760, pp. 1226-1234
  • Peters, S., Mundree, S.G., Thomson, J.A., Farrant, J.M., Keller, F., Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit (2007) J. Exp. Bot., 58, pp. 1947-1956
  • Potts, M., Desiccation tolerance of prokaryotes (1994) Microbiol. Rev., 58, pp. 755-805
  • Ramanjulu, S., Bartels, D., Drought- and desiccation-induced modulation of gene expression in plants (2002) Plant Cell Environ., 25, pp. 141-151
  • Reiser, V., Raitt, D.C., Saito, H., Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure (2003) J. Cell Biol., 161, pp. 1035-1040
  • Rensing, S.A., The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants (2008) Science, 319, pp. 64-69
  • Roberti, M.J., Bertoncini, C.W., Klement, R., Jares-Erijman, E.A., Jovin, T.M., Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged alpha-synuclein (2007) Nat. Methods, 4, pp. 345-351
  • Ron, D., Walter, P., Signal integration in the endoplasmic reticulum unfolded protein response (2007) Nat. Rev. Mol. Cell Biol., 8, pp. 519-529
  • Sasahara, K., Yagi, H., Naiki, H., Goto, Y., Heat-induced conversion of beta(2)-microglobulin and hen egg-white lysozyme into amyloid fibrils (2007) J. Mol. Biol., 372, pp. 981-991
  • Seki, M., Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray (2002) Plant J., 31, pp. 279-292
  • Shinozaki, K., Yamaguchi-Shinozaki, K., Seki, M., Regulatory network of gene expression in the drought and cold stress responses (2003) Curr. Opin. Plant Biol., 6, pp. 410-417
  • Song, W.Y., Zhang, Z.B., Shao, H.B., Guo, X.L., Cao, H.X., Zhao, H.B., Fu, Z.Y., Hu, X.J., Relationship between calcium decoding elements and plant abiotic-stress resistance (2008) Int. J. Biol. Sci., 4, pp. 116-125
  • Tolleter, D., Jaquinod, M., Mangavel, C., Passirani, C., Saulnier, P., Manon, S., Teyssier, E., Macherel, D., Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation (2007) Plant Cell, 19, pp. 1580-1589
  • Tompa, P., Bánki, P., Bokor, M., Kamasa, P., Kovács, D., Lasanda, G., Tompa, K., Protein-water and protein-buffer interactions in the aqueous solution of an intrinsically unstructured plant dehydrin: NMR intensity and DSC aspects (2006) Biophys. J., 91, pp. 2243-2249
  • Tunnacliffe, A., Lapinski, J., Resurrecting Van Leeuwenhoek's rotifers: a reappraisal of the role of disaccharides in anhydrobiosis (2003) Philos. Trans. R Soc. Lond. B Biol. Sci., 358, pp. 1755-1771
  • Tunnacliffe, A., Wise, M.J., The continuing conundrum of the LEA proteins (2007) Naturwissenschaften, 94, pp. 791-812
  • Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T., Shinozaki, K., A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor (1999) Plant Cell, 11, pp. 1743-1754
  • Uversky, V.N., Gillespie, J.R., Fink, A.L., Why are "natively unfolded" proteins unstructured under physiologic conditions? (2000) Proteins, 41, pp. 415-427
  • van der Heide, T., Poolman, B., Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane (2000) Proc. Natl. Acad. Sci., 97, pp. 7102-7106
  • van Gemeren, I.A., Punt, P.J., Drint-Kuyvenhoven, A., Broekhuijsen, M.P., van't Hoog, A., Beijersbergen, A., Verrips, C.T., van den Hondel, C.A., The ER chaperone-encoding bipA gene of black Aspergilli is induced by heat shock and unfolded proteins (1997) Gene, 198, pp. 43-52
  • Vinocur, B., Altman, A., Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations (2005) Curr. Opin. Biotechnol., 16, pp. 123-132
  • Weaver, I.C., D'Alessio, A.C., Brown, S.E., Hellstrom, I.C., Dymov, S., Sharma, S., Szyf, M., Meaney, M.J., The transcription factor nerve growth factor-inducible protein "a" mediates epigenetic programming: altering epigenetic marks by immediate-early genes (2007) J. Neurosci., 27, pp. 1756-1768
  • Wingler, A., The function of trehalose biosynthesis in plants (2002) Phytochemistry, 60, pp. 437-440
  • Wise, M.J., Tunnacliffe, A., POPP the question: what do LEA proteins do? (2004) Trends Plant Sci., 9, pp. 13-17
  • Wohlbach, D.J., Quirino, B.F., Sussman, M.R., Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation (2008) Plant Cell, 20, pp. 1101-1117
  • Wolkers, W.F., Tetteroo, F.A., Alberda, M., Hoekstra, F.A., Changed properties of the cytoplasmic matrix associated with desiccation tolerance of dried carrot somatic embryos. An In situ Fourier transform infrared spectroscopic study (1999) Plant Physiol., 120, pp. 153-164
  • Wolkers, W.F., McCready, S., Brandt, W.F., Lindsey, G.G., Hoekstra, F.A., Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro (2001) Biochim. Biophys. Acta, 1544, pp. 196-206
  • Yancey, P.H., Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses (2005) J. Exp. Biol., 208, pp. 2819-2830
  • Yang, C.Y., Chen, Y.C., Jauh, G.Y., Wang, C.S., A Lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis (2005) Plant Physiol., 139, pp. 836-846

Citas:

---------- APA ----------
Caramelo, J.J. & Iusem, N.D. (2009) . When cells lose water: Lessons from biophysics and molecular biology. Progress in Biophysics and Molecular Biology, 99(1), 1-6.
http://dx.doi.org/10.1016/j.pbiomolbio.2008.10.001
---------- CHICAGO ----------
Caramelo, J.J., Iusem, N.D. "When cells lose water: Lessons from biophysics and molecular biology" . Progress in Biophysics and Molecular Biology 99, no. 1 (2009) : 1-6.
http://dx.doi.org/10.1016/j.pbiomolbio.2008.10.001
---------- MLA ----------
Caramelo, J.J., Iusem, N.D. "When cells lose water: Lessons from biophysics and molecular biology" . Progress in Biophysics and Molecular Biology, vol. 99, no. 1, 2009, pp. 1-6.
http://dx.doi.org/10.1016/j.pbiomolbio.2008.10.001
---------- VANCOUVER ----------
Caramelo, J.J., Iusem, N.D. When cells lose water: Lessons from biophysics and molecular biology. Prog. Biophys. Mol. Biol. 2009;99(1):1-6.
http://dx.doi.org/10.1016/j.pbiomolbio.2008.10.001