Artículo

Davies-Sala, C.; Soler-Bistué, A.; Bonomo, R.A.; Zorreguieta, A.; Tolmasky, M.E. "External guide sequence technology: A path to development of novel antimicrobial therapeutics" (2015) Annals of the New York Academy of Sciences. 1354(1):98-110
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

RNase P is a ribozyme originally identified for its role in maturation of tRNAs by cleavage of precursor tRNAs (pre-tRNAs) at the 5′-end termini. RNase P is a ribonucleoprotein consisting of a catalytic RNA molecule and, depending on the organism, one or more cofactor proteins. The site of cleavage of a pre-tRNA is identified by its tertiary structure; and any RNA molecule can be cleaved by RNase P as long as the RNA forms a duplex that resembles the regional structure in the pre-tRNA. When the antisense sequence that forms the duplex with the strand that is subsequently cleaved by RNase P is in a separate molecule, it is called an external guide sequence (EGS). These fundamental observations are the basis for EGS technology, which consists of inhibiting gene expression by utilizing an EGS that elicits RNase P-mediated cleavage of a target mRNA molecule. EGS technology has been used to inhibit expression of a wide variety of genes, and may help development of novel treatments of diseases, including multidrug-resistant bacterial and viral infections. © 2015 The New York Academy of Sciences.

Registro:

Documento: Artículo
Título:External guide sequence technology: A path to development of novel antimicrobial therapeutics
Autor:Davies-Sala, C.; Soler-Bistué, A.; Bonomo, R.A.; Zorreguieta, A.; Tolmasky, M.E.
Filiación:Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Argentina
Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
Department of Genomes and Genetics, Institut Pasteur, Paris, France
Palabras clave:Antimicrobials; Antisense; Drug design; External guide sequence; RNase P; aminoglycoside 6' n acetyltransferase type Ib; antibiotic agent; bacterial enzyme; FtsZ protein; messenger RNA; ribonuclease P; unclassified drug; antiinfective agent; antisense oligonucleotide; bacterial RNA; ribozyme; antibiotic resistance; Article; bacterial infection; Brucella melitensis; Cytomegalovirus; enzyme inhibition; Escherichia coli; external guide sequence; Francisella tularensis; gene expression; genetic procedures; Hepatitis B virus; human; Human immunodeficiency virus; Influenza virus; nonhuman; protein cleavage; protein targeting; Salmonella enterica serovar Typhimurium; virus; virus infection; Yersinia pestis; Bacterial Infections; bacterium; biological model; chemistry; conformation; drug effects; genetics; metabolism; microbiology; Anti-Bacterial Agents; Bacteria; Bacterial Infections; Humans; Models, Genetic; Nucleic Acid Conformation; Oligoribonucleotides, Antisense; Ribonuclease P; RNA, Bacterial; RNA, Catalytic
Año:2015
Volumen:1354
Número:1
Página de inicio:98
Página de fin:110
DOI: http://dx.doi.org/10.1111/nyas.12755
Título revista:Annals of the New York Academy of Sciences
Título revista abreviado:Ann. New York Acad. Sci.
ISSN:00778923
CODEN:ANYAA
CAS:ribonuclease P, 71427-00-4; Anti-Bacterial Agents; Oligoribonucleotides, Antisense; Ribonuclease P; RNA, Bacterial; RNA, Catalytic
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00778923_v1354_n1_p98_DaviesSala

Referencias:

  • Schedl, P., Primakoff, P., Roberts, J., Processing of E. coli tRNA precursors (1975) Brookhaven Symp. Biol., pp. 53-76
  • Altman, S., A view of RNase P (2007) Mol. Biosyst, 3, pp. 604-607
  • Guerrier-Takada, C., The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme (1983) Cell, 35, pp. 849-857
  • Altman, S., Ribonuclease P (2011) Philos. Trans. R. Soc. Lond. B Biol. Sci., 366, pp. 2936-2941
  • Kazantsev, A.V., Pace, N.R., Bacterial RNase P: a new view of an ancient enzyme (2006) Nat. Rev. Microbiol., 4, pp. 729-740
  • Bothwell, A.L., Garber, R.L., Altman, S., Nucleotide sequence and in vitro processing of a precursor molecule to Escherichia coli 4.5 S RNA (1976) J. Biol. Chem., 251, pp. 7709-7716
  • Lundblad, E.W., Altman, S., Inhibition of gene expression by RNase P (2010) N. Biotechnol, 27, pp. 212-221
  • Jarrous, N., Gopalan, V., Archaeal/eukaryal RNase P: subunits, functions and RNA diversification (2010) Nucleic Acids Res, 38, pp. 7885-7894
  • Jarrous, N., Reiner, R., Human RNase P: a tRNA-processing enzyme and transcription factor (2007) Nucleic Acids Res, 35, pp. 3519-3524
  • Komine, Y., A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 9223-9227
  • Reiner, R., A role for the catalytic ribonucleoprotein RNase P in RNA polymerase III transcription (2006) Genes Dev, 20, pp. 1621-1635
  • Reiner, R., Function and assembly of a chromatin-associated RNase P that is required for efficient transcription by RNA polymerase I (2008) PLoS One, 3, p. e4072
  • Hartmann, R.K., Precursor of C4 antisense RNA of bacteriophages P1 and P7 is a substrate for RNase P of Escherichia coli (1995) Proc. Natl. Acad. Sci. U. S. A., 92, pp. 5822-5826
  • Forti, F., Immunity determinant of phage-plasmid P4 is a short processed RNA (1995) J. Mol. Biol., 249, pp. 869-878
  • Alifano, P., Ribonuclease E provides substrates for ribonuclease P-dependent processing of a polycistronic mRNA (1994) Genes Dev, 8, pp. 3021-3031
  • Ko, J.H., Altman, S., OLE RNA, an RNA motif that is highly conserved in several extremophilic bacteria, is a substrate for and can be regulated by RNase P RNA (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 7815-7820
  • Yang, L., Altman, S., A noncoding RNA in Saccharomyces cerevisiae is an RNase P substrate (2007) RNA, 13, pp. 682-690
  • Marvin, M.C., Engelke, D.R., RNase P: increased versatility through protein complexity? (2009) RNA Biol, 6, pp. 40-42
  • Mondragon, A., Structural studies of RNase P (2013) Annu. Rev. Biophys, 42, pp. 537-557
  • Reiter, N.J., Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA (2010) Nature, 468, pp. 784-789
  • Evans, D., Marquez, S.M., Pace, N.R., RNase P: interface of the RNA and protein worlds (2006) Trends Biochem. Sci., 31, pp. 333-341
  • Torres-Larios, A., Crystal structure of the RNA component of bacterial ribonuclease P (2005) Nature, 437, pp. 584-587
  • Sun, L., Evidence that substrate-specific effects of C5 protein lead to uniformity in binding and catalysis by RNase P (2006) EMBO J, 25, pp. 3998-4007
  • Kirsebom, L.A., Svard, S.G., The kinetics and specificity of cleavage by RNase P is mainly dependent on the structure of the amino acid acceptor stem (1992) Nucleic Acids Res, 20, pp. 425-432
  • Kirsebom, L.A., RNase P RNA mediated cleavage: substrate recognition and catalysis (2007) Biochimie, 89, pp. 1183-1194
  • Gopalan, V., Vioque, A., Altman, S., RNase P: variations and uses (2002) J. Biol. Chem., 277, pp. 6759-6762
  • Forster, A.C., Altman, S., External guide sequences for an RNA enzyme (1990) Science, 249, pp. 783-786
  • McClain, W.H., Guerrier-Takada, C., Altman, S., Model substrates for an RNA enzyme (1987) Science, 238, pp. 527-530
  • Svard, S.G., Kirsebom, L.A., Determinants of Escherichia coli RNase P cleavage site selection: a detailed in vitro and in vivo analysis (1993) Nucleic Acids Res, 21, pp. 427-434
  • Kole, R., Krainer, A.R., Altman, S., RNA therapeutics: beyond RNA interference and antisense oligonucleotides (2012) Nat. Rev. Drug Discov, 11, pp. 125-140
  • Li, Y., Guerrier-Takada, C., Altman, S., Targeted cleavage of mRNA in vitro by RNase P from Escherichia coli (1992) Proc. Natl. Acad. Sci. U. S. A., 89, pp. 3185-3189
  • Yuan, Y., Altman, S., Selection of guide sequences that direct efficient cleavage of mRNA by human ribonuclease P (1994) Science, 263, pp. 1269-1273
  • Ho, S.P., Potent antisense oligonucleotides to the human multidrug resistance-1 mRNA are rationally selected by mapping RNA-accessible sites with oligonucleotide libraries (1996) Nucleic Acids Res, 24, pp. 1901-1907
  • Sarno, R., Inhibition of aminoglycoside 6′-N-acetyltransferase type Ib-mediated amikacin resistance by antisense oligodeoxynucleotides (2003) Antimicrob. Agents Chemother., 47, pp. 3296-3304
  • Lundblad, E.W., Rapid selection of accessible and cleavable sites in RNA by Escherichia coli RNase P and random external guide sequences (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 2354-2357
  • Jiang, X., Effective inhibition of cytomegalovirus infection by external guide sequences in mice (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 13070-13075
  • Zhou, T., In vitro selection of external guide sequences for directing RNase P-mediated inhibition of viral gene expression (2002) J. Biol. Chem., 277, pp. 30112-30120
  • Climie, S.C., Friesen, J.D., In vivo and in vitro structural analysis of the rplJ mRNA leader of Escherichia coli. Protection by bound L10-L7/L12 (1988) J. Biol. Chem., 263, pp. 15166-15175
  • McKinney, J.S., Disruption of type III secretion in Salmonella enterica serovar Typhimurium by external guide sequences (2004) Nucleic Acids Res, 32, pp. 848-854
  • Guerrier-Takada, C., Altman, S., Inactivation of gene expression using ribonuclease P and external guide sequences (2000) Methods Enzymol, 313, pp. 442-456
  • Ko, J.H., Izadjoo, M., Altman, S., Inhibition of expression of virulence genes of Yersinia pestis in Escherichia coli by external guide sequences and RNase P (2008) RNA, 14, pp. 1656-1662
  • Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction (2003) Nucleic Acids Res, 31, pp. 3406-3415
  • Ma, M., Intracellular mRNA cleavage induced through activation of RNase P by nuclease-resistant external guide sequences (2000) Nat. Biotechnol., 18, pp. 58-61
  • Bassett, T., Effective stimulation of growth in MCF-7 human breast cancer cells by inhibition of syntaxin18 by external guide sequence and ribonuclease P (2008) Cancer Lett, 272, pp. 167-175
  • Zhu, J., Effective inhibition of Rta expression and lytic replication of Kaposi's sarcoma-associated herpesvirus by human RNase P (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 9073-9078
  • Dreyfus, D.H., Ghoda, L., A review of recent patents concerning therapy of respiratory diseases using gene silencing by RNAi (RISC) and EGS (RNAse P) (2007) Recent Pat. Inflamm. Allergy Drug Discov., 1, pp. 49-55
  • Dreyfus, D.H., Matczuk, A., Fuleihan, R., An RNA external guide sequence ribozyme targeting human interleukin-4 receptor alpha mRNA (2004) Int. Immunopharmacol., 4, pp. 1015-1027
  • Pei, D.S., Inhibition of no tail (ntl) gene expression in zebrafish by external guide sequence (EGS) technique (2008) Mol. Biol. Rep., 35, pp. 139-143
  • Yen, L., Reduction of functional N-methyl-D-aspartate receptors in neurons by RNase P-mediated cleavage of the NR1 mRNA (2001) J. Neurochem., 76, pp. 1386-1394
  • Kovrigina, E., Wesolowski, D., Altman, S., Coordinate inhibition of expression of several genes for protein subunits of human nuclear RNase P (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 1598-1602
  • Zhang, H., Altman, S., Inhibition of the expression of the human RNase P protein subunits Rpp21, Rpp25, Rpp29 by external guide sequences (EGSs) and siRNA (2004) J. Mol. Biol., 342, pp. 1077-1083
  • Raj, M.L., Cleavage of bipartite substrates by rice and maize ribonuclease P. Application to degradation of target mRNAs in plants (2001) Plant Physiol., 125, pp. 1187-1190
  • Rangarajan, S., RNase P as a tool for disruption of gene expression in maize cells (2004) Biochem. J., 380, pp. 611-616
  • Augagneur, Y., Gene selective mRNA cleavage inhibits the development of Plasmodium falciparum (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 6235-6240
  • Cheng, X., Ko, J.H., Altman, S., Inactivation of expression of two genes in Saccharomyces cerevisiae with the external guide sequence methodology (2011) RNA, 17, pp. 544-549
  • Guerrier-Takada, C., Li, Y., Altman, S., Artificial regulation of gene expression in Escherichia coli by RNase P (1995) Proc. Natl. Acad. Sci. U. S. A., 92, pp. 11115-11119
  • Wegscheid, B., Hartmann, R.K., The precursor tRNA 3′-CCA interaction with Escherichia coli RNase P RNA is essential for catalysis by RNase P in vivo (2006) RNA, 12, pp. 2135-2148
  • Guerrier-Takada, C., Salavati, R., Altman, S., Phenotypic conversion of drug-resistant bacteria to drug sensitivity (1997) Proc. Natl. Acad. Sci. U. S. A., 94, pp. 8468-8472
  • Yuan, Y., Hwang, E.S., Altman, S., Targeted cleavage of mRNA by human RNase P (1992) Proc. Natl. Acad. Sci. U. S. A., 89, pp. 8006-8010
  • Werner, M., Short oligonucleotides as external guide sequences for site-specific cleavage of RNA molecules with human RNase P (1998) RNA, 4, pp. 847-855
  • Werner, M., Targeted cleavage of RNA molecules by human RNase P using minimized external guide sequences (1999) Antisense Nucleic Acid Drug Dev, 9, pp. 81-88
  • Barnor, J.S., Effective inhibition of HIV-1 replication in cultured cells by external guide sequences and ribonuclease P (2004) Bioorg. Med. Chem. Lett., 14, pp. 4941-4944
  • Laspia, M.F., Rice, A.P., Mathews, M.B., HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation (1989) Cell, 59, pp. 283-292
  • Kashanchi, F., Wood, C., Human immunodeficiency viral long terminal repeat is functional and can be trans-activated in Escherichia coli (1989) Proc. Natl. Acad. Sci. U. S. A., 86, pp. 2157-2161
  • Turner, B.G., Summers, M.F., Structural biology of HIV (1999) J. Mol. Biol., 285, pp. 1-32
  • Xia, C., Inhibition of hepatitis B virus gene expression and replication by ribonuclease P (2013) Mol. Ther., 21, pp. 995-1003
  • Zhang, Z., Engineered external guide sequences are highly effective in inhibiting gene expression and replication of hepatitis B virus in cultured cells (2013) PLoS One, 8, p. e65268
  • Bijlsma, J.J., Groisman, E.A., The PhoP/PhoQ system controls the intramacrophage type three secretion system of Salmonella enterica (2005) Mol. Microbiol., 57, pp. 85-96
  • Yang, P.L., Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 13825-13830
  • Roehr, B., Fomivirsen approved for CMV retinitis (1998) J. Int. Assoc. Physicians AIDS Care, 4, pp. 14-16
  • Azad, R.F., Antiviral activity of a phosphorothioate oligonucleotide complementary to human cytomegalovirus RNA when used in combination with antiviral nucleoside analogs (1995) Antiviral Res, 28, pp. 101-111
  • Jiang, X., Ribonuclease P-mediated inhibition of human cytomegalovirus gene expression and replication induced by engineered external guide sequences (2012) RNA Biol, 9, pp. 1186-1195
  • Bai, Y., Oral delivery of RNase P ribozymes by Salmonella inhibits viral infection in mice (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 3222-3227
  • Yang, Z., Engineered RNase P ribozymes effectively inhibit human cytomegalovirus gene expression and replication (2014) Viruses, 6, pp. 2376-2391
  • Kilani, A.F., RNase P ribozymes selected in vitro to cleave a viral mRNA effectively inhibit its expression in cell culture (2000) J. Biol. Chem., 275, pp. 10611-10622
  • Kawa, D., Inhibition of viral gene expression by human ribonuclease P (1998) RNA, 4, pp. 1397-1406
  • Plehn-Dujowich, D., Altman, S., Effective inhibition of influenza virus production in cultured cells by external guide sequences and ribonuclease P (1998) Proc. Natl. Acad. Sci. U. S. A., 95, pp. 7327-7332
  • Manz, B., Schwemmle, M., Brunotte, L., Adaptation of avian influenza A virus polymerase in mammals to overcome the host species barrier (2013) J. Virol., 87, pp. 7200-7209
  • McKinney, J., Inhibition of Escherichia coli viability by external guide sequences complementary to two essential genes (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 6605-6610
  • Ramirez, M.S., Nikolaidis, N., Tolmasky, M.E., Rise and dissemination of aminoglycoside resistance: the aac(6′)-Ib paradigm (2013) Front Microbiol, 4, p. 121
  • Ramirez, M.S., Tolmasky, M.E., Aminoglycoside modifying enzymes (2010) Drug Resist. Updat, 13, pp. 151-171
  • Shaw, K.J., Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes (1993) Microbiol. Rev., 57, pp. 138-163
  • Ramirez, M.S., Plasmid-mediated antibiotic resistance and virulence in Gram-negatives: the Klebsiella pneumoniae paradigm (2014) Microbiol. Spec., 2. , PLAS-0016-2013
  • Tolmasky, M.E., Aminoglycoside-modifying enzymes: characteristics, localization, and dissemination (2007) Enzyme-Mediated Resistance to Antibiotics: Mechanisms, Dissemination, and Prospects for Inhibition, pp. 35-52. , In R. Bonomo & M.E. Tolmasky, Eds.: Washington, DC: ASM Press
  • Soler Bistue, A.J., External guide sequences targeting the aac(6′)-Ib mRNA induce inhibition of amikacin resistance (2007) Antimicrob. Agents Chemother., 51, pp. 1918-1925
  • Kuwabara, T., Warashina, M., Taira, K., Cleavage of an inaccessible site by the maxizyme with two independent binding arms: an alternative approach to the recruitment of RNA helicases (2002) J. Biochem., 132, pp. 149-155
  • de Boer, P.A., Advances in understanding E. coli cell fission (2010) Curr. Opin. Microbiol., 13, pp. 730-737
  • Erickson, H.P., Anderson, D.E., Osawa, M., FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one (2010) Microbiol. Mol. Biol. Rev., 74, pp. 504-528
  • Mingorance, J., Strong FtsZ is with the force: mechanisms to constrict bacteria (2010) Trends Microbiol, 18, pp. 348-356
  • Vivancos, A.P., Strand-specific deep sequencing of the transcriptome (2010) Genome Res, 20, pp. 989-999
  • Davies Sala, C., Inhibition of cell division induced by external guide sequences (EGS Technology) targeting ftsZ (2012) PLoS One, 7, p. e47690
  • Bronstein, P.A., Miao, E.A., Miller, S.I., InvB is a type III secretion chaperone specific for SspA (2000) J. Bacteriol., 182, pp. 6638-6644
  • Eichelberg, K., Ginocchio, C.C., Galan, J.E., Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins (1994) J. Bacteriol., 176, pp. 4501-4510
  • Plano, G.V., Schesser, K., The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses (2013) Immunol. Res., 57, pp. 237-245
  • Xiao, G., Inhibition of expression in Escherichia coli of a virulence regulator MglB of Francisella tularensis using external guide sequence technology (2008) PLoS One, 3, p. e3719
  • Steiner, D.J., Furuya, Y., Metzger, D.W., Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity (2014) Infect. Drug Resist., 7, pp. 239-251
  • Soler Bistue, A.J., Inhibition of aac(6′)-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 13230-13235
  • Traglia, G.M., Internalization of Locked Nucleic Acids/DNA Hybrid Oligomers into Escherichia coli (2012) Biores. Open Access, 1, pp. 260-263
  • Sekiguchi, M., Iida, S., Mutants of Escherichia coli permeable to actinomycin (1967) Proc. Natl. Acad. Sci. U. S. A., 58, pp. 2315-2320
  • Shen, N., Inactivation of expression of several genes in a variety of bacterial species by EGS technology (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 8163-8168
  • Altman, S., Antibiotics present and future (2014) FEBS Lett, 588, pp. 1-2
  • Wesolowski, D., Alonso, D., Altman, S., Combined effect of a peptide-morpholino oligonucleotide conjugate and a cell-penetrating peptide as an antibiotic (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. 8686-8689
  • Wesolowski, D., Basic peptide-morpholino oligomer conjugate that is very effective in killing bacteria by gene-specific and nonspecific modes (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 16582-16587
  • Sawyer, A.J., A peptide-morpholino oligomer conjugate targeting Staphylococcus aureus gyrA mRNA improves healing in an infected mouse cutaneous wound model (2013) Int. J. Pharm., 453, pp. 651-655
  • Kyriakides, T.R., Mice that lack matrix metallo-proteinase-9 display delayed wound healing associated with delayed reepithelization and disordered collagen fibrillogenesis (2009) Matrix Biol, 28, pp. 65-73

Citas:

---------- APA ----------
Davies-Sala, C., Soler-Bistué, A., Bonomo, R.A., Zorreguieta, A. & Tolmasky, M.E. (2015) . External guide sequence technology: A path to development of novel antimicrobial therapeutics. Annals of the New York Academy of Sciences, 1354(1), 98-110.
http://dx.doi.org/10.1111/nyas.12755
---------- CHICAGO ----------
Davies-Sala, C., Soler-Bistué, A., Bonomo, R.A., Zorreguieta, A., Tolmasky, M.E. "External guide sequence technology: A path to development of novel antimicrobial therapeutics" . Annals of the New York Academy of Sciences 1354, no. 1 (2015) : 98-110.
http://dx.doi.org/10.1111/nyas.12755
---------- MLA ----------
Davies-Sala, C., Soler-Bistué, A., Bonomo, R.A., Zorreguieta, A., Tolmasky, M.E. "External guide sequence technology: A path to development of novel antimicrobial therapeutics" . Annals of the New York Academy of Sciences, vol. 1354, no. 1, 2015, pp. 98-110.
http://dx.doi.org/10.1111/nyas.12755
---------- VANCOUVER ----------
Davies-Sala, C., Soler-Bistué, A., Bonomo, R.A., Zorreguieta, A., Tolmasky, M.E. External guide sequence technology: A path to development of novel antimicrobial therapeutics. Ann. New York Acad. Sci. 2015;1354(1):98-110.
http://dx.doi.org/10.1111/nyas.12755