Artículo

Rabinovich, G.A.; van Kooyk, Y.; Cobb, B.A. "Glycobiology of immune responses" (2012) Annals of the New York Academy of Sciences. 1253(1):1-15
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Unlike their protein "roommates" and their nucleic acid "cousins," carbohydrates remain an enigmatic arm of biology. The central reason for the difficulty in fully understanding how carbohydrate structure and biological function are tied is the nontemplate nature of their synthesis and the resulting heterogeneity. The goal of this collection of expert reviews is to highlight what is known about how carbohydrates and their binding partners-the microbial (non-self), tumor (altered-self), and host (self)-cooperate within the immune system, while also identifying areas of opportunity to those willing to take up the challenge of understanding more about how carbohydrates influence immune responses. In the end, these reviews will serve as specific examples of how carbohydrates are as integral to biology as are proteins, nucleic acids, and lipids. Here, we attempt to summarize general concepts on glycans and glycan-binding proteins (mainly C-type lectins, siglecs, and galectins) and their contributions to the biology of immune responses in physiologic and pathologic settings. © 2012 New York Academy of Sciences.

Registro:

Documento: Artículo
Título:Glycobiology of immune responses
Autor:Rabinovich, G.A.; van Kooyk, Y.; Cobb, B.A.
Filiación:Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
Laboratorio de Glicómica Funcional, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428 Ciudad de Buenos Aires, Argentina
Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, Netherlands
Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
Palabras clave:C-type lectins; Galectins; Glycans; Glycobiology; Glycoimmunology; Lectins; Siglecs; binding protein; carbohydrate; galectin; glycan; glycan binding protein; glycoprotein; lectin; lipid; major histocompatibility antigen class 2; nucleic acid; nucleotide binding oligomerization domain like receptor; unclassified drug; autoimmunity; chronic inflammation; glycobiology; human; Human immunodeficiency virus; immune response; immune system; innate immunity; nonhuman; pathogenesis; protein expression; review; tumor immunity
Año:2012
Volumen:1253
Número:1
Página de inicio:1
Página de fin:15
DOI: http://dx.doi.org/10.1111/j.1749-6632.2012.06492.x
Título revista:Annals of the New York Academy of Sciences
Título revista abreviado:Ann. New York Acad. Sci.
ISSN:00778923
CODEN:ANYAA
CAS:lipid, 66455-18-3
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00778923_v1253_n1_p1_Rabinovich

Referencias:

  • Levine, M.J., Reddy, M.S., Tabak, L.A., Structural aspects of salivary glycoproteins (1987) J. Dent. Res., 66, pp. 436-441
  • Brockhausen, I., Schachter, H., Stanley, P., O-GalNAc Glycans (2009) Essentials of Glycobiology, pp. 115-127. , A. Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, G.W. Hart & M.E. Etzler, Eds.: Cold Spring Harbor Cold Spring Harbor Laboratory Press
  • Stanley, P., Schachter, H., Taniguchi, N., N-Glycans (2009) Essentials of Glycobiology, pp. 101-114. , A. Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, G.W. Hart & M.E. Etzler, Eds.:. Cold Spring Harbor Cold Spring Harbor Laboratory Press
  • Nothaft, H., Szymanski, C.M., Protein glycosylation in bacteria: sweeter than ever (2010) Nat. Rev. Microbiol., 8, pp. 765-778
  • Theodore, M., Morava, E., Congenital disorders of glycosylation: sweet news (2011) Curr. Opin. Pediatr., 23, pp. 581-587
  • Van Geet, C., Jaeken, J., Freson, K., Congenital disorders of glycosylation type Ia and IIa are associated with different primary haemostatic complications (2001) J. Inherit. Metab Dis., 24, pp. 477-492
  • Wang, Y., Tan, J., Sutton-Smith, M., Modeling human congenital disorder of glycosylation type IIa in the mouse: conservation of asparagine-linked glycan-dependent functions in mammalian physiology and insights into disease pathogenesis (2001) Glycobiology, 11, pp. 1051-1070
  • Ohtsubo, K., Marth, J.D., Glycosylation in cellular mechanisms of health and disease (2006) Cell, 126, pp. 855-866
  • Takahashi, M., Kuroki, Y., Ohtsubo, K., Taniguchi, N., Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins (2009) Carbohydr. Res., 344, pp. 1387-1390
  • Oberg, F., Sjohamn, J., Fischer, G., Glycosylation increases the thermostability of human aquaporin 10 protein (2011) J. Biol. Chem., 286, pp. 31915-31923
  • Garner, O.B., Baum, L.G., Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling (2008) Biochem. Soc. Trans., 36, pp. 1472-1477
  • Boscher, C., Dennis, J.W., Nabi, I.R., Glycosylation, galectins and cellular signaling (2011) Curr. Opin. Cell. Biol., 23, pp. 383-392
  • Li, Y., Li, H., Dimasi, N., Crystal structure of a superantigen bound to the high-affinity, zinc-dependent site on MHC class II (2001) Immunity, 14, pp. 93-104
  • Dai, S., Murphy, G.A., Crawford, F., Crystal structure of HLA-DP2 and implications for chronic beryllium disease (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 7425-7430
  • Harrison, R.L., Jarvis, D.L., Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce "mammalianized" recombinant glycoproteins (2006) Adv. Virus Res., 68, pp. 159-191
  • Blixt, O., Head, S., Mondala, T., Printed covalent glycan array for ligand profiling of diverse glycan binding proteins (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 17033-17038
  • Comelli, E.M., Head, S.R., Gilmartin, T., A focused microarray approach to functional glycomics: transcriptional regulation of the glycome (2006) Glycobiology, 16, pp. 117-131
  • Demetriou, M., Granovsky, M., Quaggin, S., Dennis, J.W., Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation (2001) Nature, 409, pp. 733-739
  • Ryan, S.O., Bonomo, J.A., Zhao, F., Cobb, B.A., MHCII glycosylation modulates Bacteroides fragilis carbohydrate antigen presentation (2011) J. Exp. Med., 208, pp. 1041-1053
  • Amith, S.R., Jayanth, P., Franchuk, S., Dependence of pathogen molecule-induced toll-like receptor activation and cell function on Neu1 sialidase (2009) Glycoconj. J., 26, pp. 1197-1212
  • Amith, S.R., Jayanth, P., Franchuk, S., Neu1 desialylation of sialyl alpha-2,3-linked beta-galactosyl residues of TOLL-like receptor 4 is essential for receptor activation and cellular signaling (2010) Cell Signal., 22, pp. 314-324
  • van Kooyk, Y., Geijtenbeek, T.B., DC-SIGN: escape mechanism for pathogens (2003) Nat. Rev. Immunol., 3, pp. 697-709
  • Andersson, K.B., Draves, K.E., Magaletti, D.M., Characterization of the expression and gene promoter of CD22 in murine B cells (1996) Eur. J. Immunol., 26, pp. 3170-3178
  • O'Reilly, M.K., Tian, H., Paulson, J.C., CD22 is a recycling receptor that can shuttle cargo between the cell surface and endosomal compartments of B cells (2011) J. Immunol., 186, pp. 1554-1563
  • Liu, F.T., Rabinovich, G.A., Galectins: regulators of acute and chronic inflammation (2010) Ann. N. Y. Acad. Sci., 1183, pp. 158-182
  • Anthony, R.M., Kobayashi, T., Wermeling, F., Ravetch, J.V., Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway (2011) Nature, 475, pp. 110-113
  • Kaneko, Y., Nimmerjahn, F., Ravetch, J.V., Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation (2006) Science, 313, pp. 670-673
  • Matsushita, M., Ficolins: complement-activating lectins involved in innate immunity (2010) J. Innate. Immun., 2, pp. 24-32
  • Stanley, P., Okajima, T., Roles of glycosylation in Notch signaling (2010) Curr. Top. Dev. Biol., 92, pp. 131-164
  • Lowe, J.B., Glycan-dependent leukocyte adhesion and recruitment in inflammation (2003) Curr. Opin. Cell Biol., 15, pp. 531-538
  • Mitoma, J., Bao, X., Petryanik, B., Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment (2007) Nat. Immunol., 8, pp. 409-418
  • Pashov, A., Garimalla, S., Monzavi-Karbassi, B., Kieber-Emmons, T., Carbohydrate targets in HIV vaccine research: lessons from failures (2009) Immunotherapy, 1, pp. 777-794
  • Krinos, C.M., Coyne, M.J., Weinacht, K.G., Extensive surface diversity of a commensal microorganism by multiple DNA inversions (2001) Nature, 414, pp. 555-558
  • Carlin, A.F., Lewis, A.L., Varki, A., Nizet, V., Group B streptococcal capsular sialic acids interact with siglecs (immunoglobulin-like lectins) on human leukocytes (2007) J. Bacteriol., 189, pp. 1231-1237
  • van Kooyk, Y., Rabinovich, G.A., Protein-glycan interactions in the control of innate and adaptive immune responses (2008) Nat. Immunol., 9, pp. 593-601
  • Drickamer, K., C-type lectin-like domains (1999) Curr. Opin. Struct. Biol., 9, pp. 585-590
  • Figdor, C.G., van Kooyk, Y., Adema, G.J., C-type lectin receptors on dendritic cells and Langerhans cells (2002) Nat. Rev. Immunol., 2, pp. 77-84
  • Kawasaki, T., Li, M., Kozutsumi, Y., Yamashina, I., Isolation and characterization of a receptor lectin specific for galactose/N-acetylgalactosamine from macrophages (1986) Carbohydr. Res., 151, pp. 197-206
  • van Vliet, S.J., Saeland, E., van Kooyk, Y., Sweet preferences of MGL:carbohydrate specificity and function (2008) Trends Immunol., 29, pp. 83-90
  • Zelensky, A.N., Gready, J.E., The C-type lectin-like domain superfamily (2005) FEBS J., 272, pp. 6179-6217
  • Engering, A., Geijtenbeek, T.B., van Vliet, S.J., The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells (2002) J. Immunol., 168, pp. 2118-2126
  • Unger, W.W.J., van Kooyk, Y., Dressed for success; C-type lectin receptors for the delivery of glyco-vaccines to dendritic cells (2011) Curr. Opin Immunol., 23, pp. 131-137
  • Birkholz, K., Schwenkert, M., Kellner, C., Targeting of DEC-205 on human dendritic cells results in efficient MHC class II-restricted antigen presentation (2010) Blood, 116, pp. 2277-2285
  • Singh, S.K., Stephani, J., Schaefer, M., Targeting of glycan modified OVA to murine DC-SIGN transgenic dendritic cells enhances MHC class I and II presentation (2009) Mol. Immunol., 47, pp. 164-174
  • Idoyaga, J., Cheong, C., Suda, K., Langerin/CD207 receptor on dendritic cells mediates efficiënt antigen presentation of non MHC I and II products in vivo (2008) J. Immunol., 180, pp. 3647-3650
  • Bozzacco, L., Trumpfheller, C., Siegal, F.P., DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 1289-1294
  • Sancho, D., Mourao-Sa, D., Joffre, O.P., Tumor therapy in mice via antigen targeting to a novel DC restricted C-type lectin (2008) J. Clin. Invest., 118, pp. 2098-2110
  • Osorio, F., Reis e Sousa, C., Myeloid C-type lectin receptors in pathogen recognition and host defense (2011) Immunity, 34, pp. 651-664
  • Park, C.G., Takahara, K., Umemoto, E., Five mouse homologues of the human dendritic cell C-type lectin, DC-SIGN (2001) Int. Immunol., 13, pp. 1283-1290
  • Singh, S.K., Streng-Ouwehand, I., Litjens, M., Characterization of murine MGL 1 and MGL 2 C-type lectins: Distinct glycan specificities and tumor binding properties (2009) Mol. immunol., 46, pp. 1240-1249
  • Denda-Nagai, K., Aida, S., Saba, K., Distribution and function of macrophage galactose-type C-type lectin 2 (MGL2/CD301b): efficient uptake and presentation of glycosylated antigens by dendritic cells (2010) J. Biol. Chem., 285, pp. 19193-19204
  • Brown, G.D., Dectin-1: a signaling non-TLR pattern-recognition receptor (2006) Nat. Rev. Immunol., 6, pp. 33-43
  • Van Die, I., Cummings, R.D., Glycan mimmickry by parasitic helminths: a strategy for modulating the host immune response? (2010) Glycobiology, 20, pp. 2-12
  • Gow, N.A.R., van de Veerdonk, F.L., Brown, A.J.P., Netea, M.G., Candida albicans morphogenesis and host defense: discriminating invasion from colonization (2012) Nat. Rev. Microbiol., 10, pp. 112-122
  • Aarnoudse, C.A., Bax, M., Sánchez-Hernández, M., Glycan modification of the tumor antigen gp100 targets DC-SIGN to enhance dendritic cell induced antigen presentation to T cells (2008) Int. J. Cancer, 122, pp. 839-846
  • Gringhuis, S.I., van Dunnen, J., Litjens, M., C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB (2007) Immunity, 26, pp. 605-616
  • Gringhuis, S.I., den Dunnen, J., Litjens, M., Carbohydrate-specific signalling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori (2009) Nat. Immunol., 10, pp. 1081-1088
  • Geijtenbeek, T.B., Gringhuis, S.I., Signalling through C-type lectin receptors: shaping immune responses (2009) Nat. Rev. Immunol., 9, pp. 465-479
  • Geijtenbeek, T.B.H., van Vliet, S.J., Engering, A., Self- and non-self recognition by C-type lectins on dendritic cells (2003) Ann. Rev. Immunol., 22, pp. 33-54
  • Dam, T.K., Brewer, C.F., Lectins as pattern recognition molecules: the effects of epitope density in innate immunity (2010) Glycobiology, 20, pp. 270-279
  • van Gisbergen, K.P.J.M., Aarnoudse, C.A., Meijer, G.A., Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (2005) Cancer Res., 65, pp. 5935-5943
  • Saeland, E., van Vliet, S.J., Bäckström, M., The C-type lectin MGL expressed by dendritic cells detects glycan changes on MUC1 in colon carcinoma (2007) Cancer Immunol. Immunother., 56, pp. 1225-1236
  • Geijtenbeek, T.B.H., Kwon, D.S., Torensma, R., DC-SIGN, a dendritic cell specific HIV-1 binding protein that enhances trans-infection of T cells (2000) Cell, 100, pp. 587-597
  • de Witte, L., Nabatov, A., Prion, M., Langerin is a natural barrier to HIV-1 transmission by Langerhans cells (2007) Nat. Med., 13, pp. 367-371
  • Lambert, A.A., Gilbert, C., Richard, M., The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans- and cis-infection pathways (2008) Blood, 112, pp. 1299-1307
  • Garcia-Vallejo, J.J., van Kooyk, Y., Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostatis (2009) Immunol. Rev., 230, pp. 22-37
  • van Gisbergen, K.P.J.M., Sanchez-Hernandez, M., Geijtenbeek, T.B., van Kooyk, Y., Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN (2005) J. Exp. Med., 201, pp. 1281-1292
  • van Vliet, S.J., Gringhuis, S.I., Geijtenbeek, T.B., van Kooyk, Y., Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45 (2006) Nat. Immunol., 24, pp. 1200-1208
  • Crocker, P.R., Paulson, J.C., Varki, A., Siglecs and their roles in the immune system (2007) Nat. Rev. Immunol., 7, pp. 255-266
  • O'Reilly, M.K., Paulson, J.C., Siglecs as targets for therapy in immune-cell-mediated disease (2009) Trends Pharmacol. Sci., 30, pp. 240-248
  • Angata, T., Varki, A., Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective (2002) Chem. Rev., 102, pp. 439-469
  • Avril, T., Wagner, E.R., Willison, H.J., Crocker, P.R., Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on Campylobacter jejuni lipooligosaccharides (2006) Infect. Immun., 74, pp. 4133-4141
  • Paul, S.P., Taylor, L.S., Stansbury, E.K., McVicar, D.W., Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2 (2000) Blood, 96, pp. 483-490
  • Liu, Y., Chen, G.Y., Zheng, P., CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns (2009) Trends Immunol., 30, pp. 557-561
  • Blasius, A.L., Colonna, M., Sampling and signaling in plasmacytoid dendritic cells: the potential roles of Siglec-H (2006) Trends Immunol., 27, pp. 255-260
  • Rabinovich, G.A., Toscano, M.A., Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation (2009) Nat. Rev. Immunol., 9, pp. 338-352
  • Di Lella, S., Sundblad, V., Cerliani, J.P., When galectins recognize glycans: from biochemistry to physiology and back again (2011) Biochemistry, 50, pp. 7842-7857
  • Sato, S., St-Pierre, C., Bhaumik, P., Nieminen, J., Galectins in innate immunity: dual functions of host soluble beta-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs) (2009) Immunol. Rev., 230, pp. 172-187
  • Brewer, C.F., Miceli, M.C., Baum, L.G., Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions (2002) Curr. Opin. Struct. Biol., 12, pp. 616-623
  • Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death (2007) Nat. Immunol., 8, pp. 825-834
  • Zhu, C., Anderson, A.C., Schubart, A., The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity (2005) Nat. Immunol., 6, pp. 1245-1252
  • Cooper, D., Ilarregui, J.M., Pesoa, S.A., Multiple functional targets of the immunoregulatory activity of galectin-1: control of immune cell trafficking, dendritic cell physiology, and T-cell fate (2010) Methods Enzymol., 480, pp. 199-244
  • Jiang, H.R., Al Rasebi, Z., Mensah-Brown, E., Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis (2009) J. Immunol., 182, pp. 1167-1173
  • Forsman, H., Islander, U., Andréasson, E., Galectin 3 aggravates joint inflammation and destruction in antigen-induced arthritis (2011) Arthritis Rheum., 63, pp. 445-454
  • Dube, D.H., Bertozzi, C.R., Glycans in cancer and inflammation-potential for therapeutics and diagnostics (2005) Nat. Rev. Drug Discov., 4, pp. 477-488
  • Sperandio, M., Gleissner, C.A., Ley, K., Glycosylation in immune cell trafficking (2009) Immunol. Rev., 230, pp. 97-113
  • Buzás, E.I., György, B., Pásztói, M., Carbohydrate recognition systems in autoimmunity (2006) Autoimmunity, 39, pp. 691-704
  • Grigorian, A., Araujo, L., Naidu, N.N., N-acetylglucosamine inhibits T-helper 1 (Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis (2011) J. Biol. Chem., 286, pp. 40133-40141
  • Green, R.S., Stone, E.L., Tenno, M., Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis (2007) Immunity, 27, pp. 308-320
  • Hiki, Y., Odani, H., Takahashi, M., Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy (2001) Kidney Int., 59, pp. 1077-1085
  • Padler-Karavani, V., Yu, H., Cao, H., Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease (2008) Glycobiology, 18, pp. 818-830
  • Ju, T., Cummings, R.D., Protein glycosylation: chaperone mutation in Tn syndrome (2005) Nature, 437, p. 1252
  • Ilarregui, J.M., Croci, D.O., Bianco, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat. Immunol., 10, pp. 981-991
  • Kel, J., Oldenampsen, J., Luca, M., Soluble mannosylated myelin peptide inhibits the encephalitogenicity of autoreactive T cells during experimental autoimmune encephalomyelitis (2007) Am. J. Pathol., 170, pp. 272-280
  • Zhou, Y., Kawasaki, H., Hsu, S.C., Oral tolerance to food-induced systemic anaphylaxis mediated by the C-type lectin SIGNR1 (2010) Nat. Med., 16, pp. 1128-1133
  • Jellusova, J., Wellmann, U., Amann, K., CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity (2010) J. Immunol., 184, pp. 3618-3627
  • Saeland, E., Belo, A.I., Mongera, S., Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients (2011) Int. J. Cancer, , Aug 5. doi:. [Epub ahead of print]
  • Bozzacco, L., Trumpfheller, C., Huang, Y., HIV gag protein is efficiently cross-presented when targeted with an antibody towards the DEC-205 receptor in Flt3 ligand-mobilized murine DC (2010) Eur. J. Immunol., 40, pp. 36-46
  • Klechevsky, E., Flamar, A.L., Cao, Y., Cross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR (2010) Blood, 116, pp. 1685-1697
  • Singh, S.K., Streng-Ouwehand, I., Litjens, M., Design of neo-glycoconjugates that target the Mannose Receptor and enhance TLR independent cross-presentation and Th1 polarization (2011) Eur. J. Immunol., 41, pp. 916-925
  • Burgdorf, S., Lukacs-Kornek, V., Kurtc, C., The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation (2006) J. Immunol., 176, pp. 6770-6776
  • Caminischi, I., Proietto, A.I., Ahmet, F., The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement (2008) Blood, 112, pp. 3264-3273
  • Sánchez-Navarro, M., Rojo, J., Targeting DC-SIGN with carbohydrate multivalent systems (2010) Drug News Perspect, 23, pp. 557-572
  • Streng-Ouwehand, I., Unger, W.W.J., van Kooyk, Y., C-type lectin receptors for tumor eradication: future directions (2011) Cancers, , 3: 3169-3188
  • Salatino, M., Rabinovich, G.A., Fine-tuning antitumor responses through the control of galectin-glycan interactions: an overview (2011) Methods Mol. Biol., 677, pp. 355-374
  • Rubinstein, N., Alvarez, M., Zwirner, N.W., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege (2004) Cancer Cell, 5, pp. 241-251
  • Cedeno-Laurent, F., Opperman, M.J., Barthel, S.R., Metabolic inhibition of galectin-1-binding carbohydrates accentuates antitumor immunity (2012) J. Invest. Dermatol, 132, pp. 410-420
  • Juszczynski, P., Ouyang, J., Monti, S., The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 13134-13139
  • Banh, A., Zhang, J., Cao, H., Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis (2011) Cancer Res., 71, pp. 4423-4431
  • Kuo, P.L., Hung, J.Y., Huang, S.K., Lung cancer-derived galectin-1 mediates dendritic cell anergy through inhibitor of DNA binding 3/IL-10 signaling pathway (2011) J. Immunol., 186, pp. 1521-1530
  • Tang, D., Yuan, Z., Xue, X., High expression of galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer (2011) Int. J. Cancer., , doi:. [Epub ahead of print
  • Soldati, R., Berger, E., Zenclussen, A.C., Neuroblastoma triggers an immunoevasive program involving galectin-1-dependent modulation of T cell and dendritic cell compartments (2011) Int. J. Cancer., , doi:. [Epub ahead of print
  • Dardalhon, V., Anderson, A.C., Karman, J., Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells (2010) J. Immunol., 185, pp. 1383-1392
  • Demotte, N., Wieërs, G., Van Der Smissen, P., A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice (2010) Cancer Res., 70, pp. 7476-7748
  • Tsuboi, S., Sutoh, M., Hatakeyama, S., A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans (2011) EMBO J., 30, pp. 3173-3185
  • Nicoll, G., Avril, T., Lock, K., Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms (2003) Eur. J. Immunol., 33, pp. 1642-1648
  • Ohta, M., Ishida, A., Toda, M., Immunomodulation of monocyte-derived dendritic cells through ligation of tumor-produced mucins to Siglec-9 (2010) Biochem. Biophys. Res. Commun., 402, pp. 663-669

Citas:

---------- APA ----------
Rabinovich, G.A., van Kooyk, Y. & Cobb, B.A. (2012) . Glycobiology of immune responses. Annals of the New York Academy of Sciences, 1253(1), 1-15.
http://dx.doi.org/10.1111/j.1749-6632.2012.06492.x
---------- CHICAGO ----------
Rabinovich, G.A., van Kooyk, Y., Cobb, B.A. "Glycobiology of immune responses" . Annals of the New York Academy of Sciences 1253, no. 1 (2012) : 1-15.
http://dx.doi.org/10.1111/j.1749-6632.2012.06492.x
---------- MLA ----------
Rabinovich, G.A., van Kooyk, Y., Cobb, B.A. "Glycobiology of immune responses" . Annals of the New York Academy of Sciences, vol. 1253, no. 1, 2012, pp. 1-15.
http://dx.doi.org/10.1111/j.1749-6632.2012.06492.x
---------- VANCOUVER ----------
Rabinovich, G.A., van Kooyk, Y., Cobb, B.A. Glycobiology of immune responses. Ann. New York Acad. Sci. 2012;1253(1):1-15.
http://dx.doi.org/10.1111/j.1749-6632.2012.06492.x