Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The molecular interaction between hormonal and cytokine signals is crucial for providing specificity to their actions and represents a key step for understanding, at the molecular level, the ultimate response of physiological neuroendocrine-immune interactions. In this article we will describe new insights into the mechanisms underlying glucocorticoid-mediated anti-inflammatory action, focused on the regulation of immune-cytokine pathways. There are different levels of interaction between intracellular signals elicited by glucocorticoids and cytokines, with the final outcome being regulation of gene expression. One such interaction involves the molecular cross-talk between the activated glucocorticoid receptor (GR) and transcription factors implicated in the regulation of cytokine synthesis and function. This interaction results in the regulation of gene transcription, as we will illustrate with the helper T (Th)1 and Th2 transcription factors T-bet and GATA-3, respectively, implicated in the outcome of specific adaptive immune responses. A further level of mutual regulation is the posttranslational modification of GR by the ubiquitin-proteasome and sumoylation systems. These posttranslational modifications regulate GR activity and will be discussed for the small ubiquitin-related modifier (SUMO) pathway and its enhancer RWD RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases-containing sumoylation enhancer (RSUME). The impact of posttranslational modifications on inflammatory pathways, such as nuclear factor-κβ and regulated cytokines, will also be discussed. © 2009 New York Academy of Sciences.

Registro:

Documento: Artículo
Título:Intracellular molecular signaling: Basis for specificity to glucocorticoid anti-inflammatory actions
Autor:Liberman, A.C.; Druker, J.; Garcia, F.A.; Holsboer, F.; Arzt, E.
Filiación:Laboratorio de Fisiología Y Biología Molecular, Departamento de Fisiología Y Biología Molecular Y Celular, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Fisologia Y Biologia Molecular Y Neurociencias, Consejo Nacional de Investigaciones Científicas Y Técnicas
Max-Planck Institute of Psychiatry, Munich, Germany
Laboratorio Fisiología Y Biología Molecular, FCEN-Universidad de Buenos Aires, Pabellón II, (C1428EHA), Buenos Aires, Argentina
Palabras clave:GATA-3; Glucocorticoids; RSUME; SUMO; T-bet; cytokine; DEAD box protein; glucocorticoid; glucocorticoid receptor; interleukin 10; interleukin 2; interleukin 4; interleukin 5; proteasome; RING finger protein; SUMO protein; transcription factor GATA 3; transcription factor T bet; ubiquitin; antiinflammatory activity; conference paper; cytokine production; human; immunomodulation; immunoregulation; inflammation; molecular recognition; nonhuman; protein processing; RING finger motif; signal transduction; sumoylation; Th1 cell; Th2 cell; transcription regulation
Año:2009
Volumen:1153
Página de inicio:6
Página de fin:13
DOI: http://dx.doi.org/10.1111/j.1749-6632.2008.03958.x
Título revista:Annals of the New York Academy of Sciences
Título revista abreviado:Ann. New York Acad. Sci.
ISSN:00778923
CODEN:ANYAA
CAS:interleukin 2, 85898-30-2; proteasome, 140879-24-9; transcription factor GATA 3, 137878-55-8; ubiquitin, 60267-61-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00778923_v1153_n_p6_Liberman

Referencias:

  • Besedovsky, H.O., Del Rey, A., Immune-neuroendocrine circuits: Integrative role of cytokines (1992) Front Neuroendocrinol., 13, pp. 61-94. , &
  • De Bosscher, K., Vanden Berghe, W., Haegeman, G., The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: Molecular mechanisms for gene repression (2003) Endocr. Rev., 24, pp. 488-522. , &
  • Ashwell, J.D., Lu, F.W., Vacchio, M.S., Glucocorticoids in T cell development and function (2000) Annu. Rev. Immunol., 18, pp. 309-345. , &
  • Liberman, A.C., Glucocorticoids in the regulation of transcription factors that control cytokine synthesis (2007) Cytokine Growth Factor Rev., 18, pp. 45-56
  • Abbas, A.K., Murphy, K.M., Sher, A., Functional diversity of helper T lymphocytes (1996) Nature, 383, pp. 787-793. , &
  • Mosmann, T.R., Coffman, R.L., TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties (1989) Annu. Rev. Immunol., 7, pp. 145-173. , &
  • Parronchi, P., IL-4 and IFN (alpha and gamma) exert opposite regulatory effects on the development of cytolytic potential by Th1 or Th2 human T cell clones (1992) J. Immunol., 149, pp. 2977-2983
  • Oriss, T.B., Crossregulation between T helper cell (Th)1 and Th2: Inhibition of Th2 proliferation by IFN-gamma involves interference with IL-1 (1997) J. Immunol., 158, pp. 3666-3672
  • Manetti, R., Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells (1993) J. Exp. Med., 177, pp. 1199-1204
  • Szabo, S.J., A novel transcription factor, T-bet, directs Th1 lineage commitment (2000) Cell, 100, pp. 655-669
  • Zhang, D.H., Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene (1997) J. Biol. Chem., 272, pp. 21597-21603
  • Szabo, S.J., Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells (2002) Science, 295, pp. 338-342
  • Zhu, J., Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses (2004) Nat. Immunol., 5, pp. 1157-1165
  • Zheng, W., Flavell, R.A., The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells (1997) Cell, 89, pp. 587-596. , &
  • Ferber, I.A., GATA-3 significantly downregulates IFN-gamma production from developing Th1 cells in addition to inducing IL-4 and IL-5 levels (1999) Clin. Immunol., 91, pp. 134-144
  • Robinson, D.S., O'Garra, A., Further checkpoints in Th1 development (2002) Immunity, 16, pp. 755-758. , &
  • Mullen, A.C., Role of T-bet in commitment of TH1 cells before IL-12-dependent selection (2001) Science, 292, pp. 1907-1910
  • Afkarian, M., T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells (2002) Nat. Immunol., 3, pp. 549-557
  • Neurath, M.F., The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease (2002) J. Exp. Med., 195, pp. 1129-1143
  • Hwang, E.S., T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3 (2005) Science, 307, pp. 430-433
  • Ho, I.C., Human GATA-3: A lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene (1991) Embo J., 10, pp. 1187-1192
  • Zhang, D.H., Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant-negative mutant of GATA-3 (1999) Immunity, 11, pp. 473-482
  • Chen, C.H., Cyclic AMP activates p38 mitogen-activated protein kinase in Th2 cells: Phosphorylation of GATA-3 and stimulation of Th2 cytokine gene expression (2000) J. Immunol., 165, pp. 5597-5605
  • Maneechotesuwan, K., Regulation of Th2 cytokine genes by p38 MAPK-mediated phosphorylation of GATA-3 (2007) J. Immunol., 178, pp. 2491-2498
  • Kovalovsky, D., Molecular mechanisms and Th1/Th2 pathways in corticosteroid regulation of cytokine production (2000) J. Neuroimmunol., 109, pp. 23-29
  • Ramirez, F., Glucocorticoids promote a TH2 cytokine response by CD4+ T cells in vitro (1996) J. Immunol., 156, pp. 2406-2412
  • Visser, J., Differential regulation of interleukin-10 (IL-10) and IL-12 by glucocorticoids in vitro (1998) Blood, 91, pp. 4255-4264
  • Wu, C.Y., Glucocorticoids suppress the production of interleukin 4 by human lymphocytes (1991) Eur. J. Immunol., 21, pp. 2645-2647
  • Chen, R., Glucocorticoids inhibit calcium- and calcineurin-dependent activation of the human IL-4 promoter (2000) J. Immunol., 164, pp. 825-832
  • Mori, A., Two distinct pathways of interleukin-5 synthesis in allergen-specific human T-cell clones are suppressed by glucocorticoids (1997) Blood, 89, pp. 2891-2900
  • Refojo, D., Integrating systemic information at the molecular level: Cross-talk between steroid receptors and cytokine signaling on different target cells (2003) Ann. N. Y. Acad. Sci., 992, pp. 196-204
  • Liberman, A.C., Refojo, D., Arzt, E., Cytokine signaling/transcription factor cross-talk in T cell activation and Th1-Th2 differentiation (2003) Arch. Immunol. Ther. Exp. (Warsz.), 51, pp. 351-365. , &
  • Liberman, A.C., The activated glucocorticoid receptor inhibits the transcription factor T-bet by direct protein-protein interaction (2007) Faseb J., 21, pp. 1177-1188
  • Young, H.A., Hardy, K.J., Interferon-gamma: Producer cells, activation stimuli, and molecular genetic regulation (1990) Pharmacol. Ther., 45, pp. 137-151. , &
  • Boumpas, D.T., Glucocorticoid therapy for immune-mediated diseases: Basic and clinical correlates (1993) Ann. Intern. Med., 119, pp. 1198-1208
  • Quan, A., McCall, M.N., Sewell, W.A., Dexamethasone inhibits the binding of nuclear factors to the IL-5 promoter in human CD4 T cells (2001) J. Allergy Clin. Immunol., 108, pp. 340-348. , &
  • Jee, Y.K., Repression of interleukin-5 transcription by the glucocorticoid receptor targets GATA3 signaling and involves histone deacetylase recruitment (2005) J. Biol. Chem., 280, pp. 23243-23250
  • Biola, A., The glucocorticoid receptor and STAT6 physically and functionally interact in T-lymphocytes (2000) FEBS Lett., 487, pp. 229-233
  • Franchimont, D., Inhibition of Th1 immune response by glucocorticoids: Dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes (2000) J. Immunol., 164, pp. 1768-1774
  • Zhang, D.H., Yang, L., Ray, A., Differential responsiveness of the IL-5 and IL-4 genes to transcription factor GATA-3 (1998) J. Immunol., 161, pp. 3817-3821. , &
  • Miyaura, H., Iwata, M., Direct and indirect inhibition of Th1 development by progesterone and glucocorticoids (2002) J. Immunol., 168, pp. 1087-1094. , &
  • Ramirez, F., Glucocorticoids induce a Th2 response in vitro (1998) Dev. Immunol., 6, pp. 233-243
  • Daynes, R.A., Araneo, B.A., Contrasting effects of glucocorticoids on the capacity of T cells to produce the growth factors interleukin 2 and interleukin 4 (1989) Eur. J. Immunol., 19, pp. 2319-2325. , &
  • Brinkmann, V., Kristofic, C., Regulation by corticosteroids of Th1 and Th2 cytokine production in human CD4+ effector T cells generated from CD45RO- and CD45RO +subsets (1995) J. Immunol., 155, pp. 3322-3328. , &
  • Blotta, M.H., Dekruyff, R.H., Umetsu, D.T., Corticosteroids inhibit IL-12 production in human monocytes and enhance their capacity to induce IL-4 synthesis in CD4 +lymphocytes (1997) J. Immunol., 158, pp. 5589-5595. , &
  • Hershko, A., Ciechanover, A., The ubiquitin system (1998) Annu. Rev. Biochem., 67, pp. 425-479. , &
  • Melchior, F., SUMO-nonclassical ubiquitin (2000) Annu. Rev. Cell Dev. Biol., 16, pp. 591-626
  • Gill, G., SUMO and ubiquitin in the nucleus: Different functions, similar mechanisms? (2004) Genes Dev., 18, pp. 2046-2059
  • Hay, R.T., SUMO: A history of modification (2005) Mol. Cell, 18, pp. 1-12
  • Desterro, J.M., Rodriguez, M.S., Hay, R.T., SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation (1998) Mol. Cell, 2, pp. 233-239. , &
  • Hay, R.T., Control of NF-kappa B transcriptional activation by signal induced proteolysis of I kappa B alpha (1999) Philos. Trans. R. Soc. Lond. B. Biol. Sci., 354, pp. 1601-1609
  • Carbia-Nagashima, A., Arzt, E., Intracellular proteins and mechanisms involved in the control of gp130/JAK/STAT cytokine signaling (2004) IUBMB Life, 56, pp. 83-88. , &
  • Bossis, G., Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation (2005) Mol. Cell Biol., 25, pp. 6964-6979
  • Tirard, M., Sumoylation and proteasomal activity determine the transactivation properties of the mineralocorticoid receptor (2007) Mol. Cell Endocrinol., 268, pp. 20-29
  • Poukka, H., Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1) (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 14145-14150
  • Le Drean, Y., Potentiation of glucocorticoid receptor transcriptional activity by sumoylation (2002) Endocrinology, 143, pp. 3482-3489
  • Tian, S., Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor (2002) Biochem. J., 367, pp. 907-911
  • Carbia-Nagashima, A., RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia (2007) Cell, 131, pp. 309-323

Citas:

---------- APA ----------
Liberman, A.C., Druker, J., Garcia, F.A., Holsboer, F. & Arzt, E. (2009) . Intracellular molecular signaling: Basis for specificity to glucocorticoid anti-inflammatory actions. Annals of the New York Academy of Sciences, 1153, 6-13.
http://dx.doi.org/10.1111/j.1749-6632.2008.03958.x
---------- CHICAGO ----------
Liberman, A.C., Druker, J., Garcia, F.A., Holsboer, F., Arzt, E. "Intracellular molecular signaling: Basis for specificity to glucocorticoid anti-inflammatory actions" . Annals of the New York Academy of Sciences 1153 (2009) : 6-13.
http://dx.doi.org/10.1111/j.1749-6632.2008.03958.x
---------- MLA ----------
Liberman, A.C., Druker, J., Garcia, F.A., Holsboer, F., Arzt, E. "Intracellular molecular signaling: Basis for specificity to glucocorticoid anti-inflammatory actions" . Annals of the New York Academy of Sciences, vol. 1153, 2009, pp. 6-13.
http://dx.doi.org/10.1111/j.1749-6632.2008.03958.x
---------- VANCOUVER ----------
Liberman, A.C., Druker, J., Garcia, F.A., Holsboer, F., Arzt, E. Intracellular molecular signaling: Basis for specificity to glucocorticoid anti-inflammatory actions. Ann. New York Acad. Sci. 2009;1153:6-13.
http://dx.doi.org/10.1111/j.1749-6632.2008.03958.x