Artículo

Beauquis, J.; Roig, P.; De Nicola, A.F.; Saravia, F. "Neuronal plasticity and antidepressants in the diabetic brain" (2009) Annals of the New York Academy of Sciences. 1153:203-208
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The hippocampus, a limbic structure linked to higher brain functions, appears vulnerable in diabetic subjects that have a higher risk of stroke, dementia, and cognitive decline. The dentate gyrus (DG) of the hippocampus is one of the limited neurogenic brain areas during adulthood; neurons born in the DG are involved in some types of learning and memory processes. We found a decrease in the ability for proliferation and neuronal differentiation of newborn cells, measured by bromodeoxyuridine incorporation in the DG, from streptozotocin-induced diabetic mice. The hilar region, formed by mature neurons presenting higher sensitivity to brain damage, showed a reduced neuronal density in diabetic mice with respect to vehicle-treated mice. Interestingly, in a spontaneous model of type 1 diabetes, we corroborated a decrease in the rate of neurogenesis in the nonobese diabetic mice compared to control strains, and this reduction was also found during the prediabetic stage. The antidepressant fluoxetine administered over a period of 10 days to diabetic mice was effective in preventing changes in proliferation and differentiation of new neurons. Confocal microscope studies, including using neuronal and glial markers, suggested that differentiation toward a neuronal phenotype was decreased in diabetic animals and was reversed by the antidepressant treatment. In addition, the loss of hilar neurons was avoided by fluoxetine treatment. Several reports have demonstrated that high susceptibility to stress and elevated corticosterone levels are detrimental to neurogenesis and contribute to neuronal loss. These features are common in some types of depression, diabetes, and aging processes, suggesting they participate in the reported hippocampal abnormalities present in these conditions. © 2009 New York Academy of Sciences.

Registro:

Documento: Artículo
Título:Neuronal plasticity and antidepressants in the diabetic brain
Autor:Beauquis, J.; Roig, P.; De Nicola, A.F.; Saravia, F.
Filiación:Neuroendocrine Biochemistry, Institute of Biology and Experimental Medicine, National Research Council, Buenos Aires, Argentina
Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
Institute of Biology and Experimental Medicine, National Research Council (CONICET), Obligado 2490, 1428 Buenos Aires, Argentina
Palabras clave:Dentate gyrus; Fluoxetine; Hippocampus; Neurogenesis; Type 1 diabetes; antidepressant agent; fluoxetine; animal cell; animal experiment; animal model; animal tissue; brain damage; brain disease; cell density; cell differentiation; cell proliferation; conference paper; controlled study; corticosterone blood level; dentate gyrus; diabetes mellitus; drug effect; hippocampus; insulin dependent diabetes mellitus; limbic cortex; mouse; nerve cell; nerve cell plasticity; nonhuman; phenotype; streptozocin diabetes; stress; Animalia; Mus
Año:2009
Volumen:1153
Página de inicio:203
Página de fin:208
DOI: http://dx.doi.org/10.1111/j.1749-6632.2008.03983.x
Título revista:Annals of the New York Academy of Sciences
Título revista abreviado:Ann. New York Acad. Sci.
ISSN:00778923
CODEN:ANYAA
CAS:fluoxetine, 54910-89-3, 56296-78-7, 59333-67-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00778923_v1153_n_p203_Beauquis

Referencias:

  • Selvarajah, D., Tesfaye, S., Central nervous system involvement in diabetes mellitus (2006) Curr. Diab. Rep., 6, pp. 431-438. , &
  • Mijnhout, G.S., Diabetic encephalopathy: A concept in need of a definition (2006) Diabetologia, 49, pp. 1447-1448
  • Northam, E.A., Rankins, D., Cameron, F., Therapy insight: The impact of type 1 diabetes on brain development and function (2006) Nat. Clin. Pract. Neurol., 2, pp. 78-86. , &
  • Gardoni, F., Effects of streptozotocin-diabetes on the hippocampal NMDA receptor complex in rats (2002) J. Neurochem., 80, pp. 438-447
  • Valastro, B., Up-regulation of glutamate receptors is associated with LTP defects in the early stages of diabetes mellitus (2002) Diabetologia, 45, pp. 642-650
  • Revsin, Y., Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes (2005) Brain Res., 1038, pp. 22-31
  • Saravia, F., Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: The nonobese diabetic (NOD) and streptozotocin-treated mice (2002) Brain Res., 957, pp. 345-353
  • Biessels, G.J., Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: Effects of insulin treatment (1998) Brain Res., 800, pp. 125-135
  • Biessels, G.J., Gispen, W.H., The impact of diabetes on cognition: What can be learned from rodent models? (2005) Neurobiol. Aging, 26 (1), pp. 36-41. , &
  • Biessels, G., Cerebral function in diabetes mellitus (1994) Diabetologia, 37, pp. 643-650
  • Ming, G.L., Song, H., Adult neurogenesis in the mammalian central nervous system (2005) Annu. Rev. Neurosci., 28, pp. 223-250. , &
  • Cameron, A., Hazel, T., McKay, R., Regulation of neurogenesis by growth factors and neurotransmitters (1998) J. Neurobiol., 36, pp. 287-306. , &
  • Cameron, H., McKay, R., Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus (2001) J. Comp. Neurol., 435, pp. 406-417. , &
  • Duman, R., Malberb, J., Nakagawa, S., D'Sa, C., Neuronal plasticity and survival in mood disorders (2000) Biol. Pychiatry, 46, pp. 1181-1191. , &
  • Gage, F., Neurogenesis in the adult brain (2002) J. Neurosci., pp. 612-613
  • Gould, E., Cameron, H.A., Regulation of neuronal birth, migration and death in the rat dentate gyrus (1996) Dev. Neurosci., 18, pp. 22-35. , &
  • Kempermann, G., Kuhn, H., Gage, F., More hippocampal neurons in adult mice living in an enriched environment (1997) Nature, 386, pp. 493-495. , &
  • Van Praag, H., Kempermann, G., Gage, F., Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus (1999) Nat. Neurosci., 2, pp. 266-270. , &
  • Van Praag, H., Functional neurogenesis in the adult hippocampus (2002) Nature, 415, pp. 1030-1034
  • Saravia, F.E., Neuroprotective effects of estradiol in hippocampal neurons and glia of middle age mice (2007) Psychoneuroendocrinology, 32, pp. 480-492
  • Madsen, T., Increased neurogenesis in a model of electroconvulsive therapy (2000) Biol. Psychiatry, 47, pp. 1043-1049
  • Saravia, F.E., Hippocampal neuropathology of diabetes mellitus is relieved by estrogen treatment (2006) Cell. Mol. Neurobiol., 26, pp. 941-955
  • Saravia, F., Oestradiol restores cell proliferation in dentate gyrus and subventricular zone of streptozotocin-diabetic mice (2004) J. Neuroendocrinol., 16, pp. 704-710
  • Beauquis, J., Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin-induced diabetic mice: Reversion by antidepressant treatment (2006) Eur. J. Neurosci., 23, pp. 1539-1546
  • Beauquis, J., Prominently decreased hippocampal neurogenesis in a spontaneous model of type 1 diabetes, the nonobese diabetic mouse (2007) Exp. Neurol., 210, pp. 359-367
  • Jacobs, B., Adult brain neurogenesis and depression (2002) Brain Behav. Immun., 16, pp. 602-609
  • Kempermann, G., Regulation of adult hippocampal neurogenesis-implications for novel theories of major depression (2002) Bipolar Disorders, 4, pp. 17-33
  • Duman, R., Malberb, J., Nakagawa, S., Regulation of adult neurogenesis by psychotropic drugs and stress (2001) J. Pharmacol. Exp. Ther., 299, pp. 401-407. , &
  • Santarelli, L., Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants (2003) Science, 301, pp. 805-809
  • Malberg, J., Implications of adult hippocampal neurogenesis in antidepressant action (2004) Rev. Psychiatric Neurosci., 29, pp. 196-205
  • Katon, W., Behavioral and clinical factors associated with depression among individuals with diabetes (2004) Diabetes Care, 27, p. 914
  • Lustman, P., Depression in adults with diabetes (1992) Diabetes Care, 15, pp. 1631-1639
  • McEwen, B., Magariños, A., Reagan, L., Studies of hormone action in the hippocampal formation. Possible relevance to depression and diabetes (2002) J. Psychosomatic Res., 53, pp. 883-890. , &
  • Barber, M., Diabetes-induced neuroendocrine changes in rats: Role of brain monoamines, insulin and leptin (2003) Brain Res., 964, pp. 128-135
  • Gispen, W., Biessels, G., Cognition and synaptic plasticity in diabetes mellitus (2000) Trends Neurosci., 23, pp. 542-549. , &
  • Mijnhout, G.S., Diabetic encephalopathy: A concept in need of a definition (2006) Diabetologia, 49, pp. 1447-1448
  • Schwartz, M.W., Porte Jr., D., Diabetes, obesity, and the brain (2005) Science, 307, pp. 375-379. , &
  • Kempermann, G., Kronenberg, G., Depressed new neurons-adult neurogenesis and a cellular plasticity hypothesis of major depression (2003) Biol. Pychiatry, 54, pp. 499-503. , &
  • Kamal, A., Hippocampal synaptic plasticity in streptozotocin-diabetic rats: Interaction of diabetes and ageing (1999) Neuroscience, 90, pp. 737-745
  • Revsin, Y., Adrenal hypersensitivity precedes chronic hypercorticism in streptozotocin-induced diabetes mice (2008) Endocrinology, 149, pp. 3531-3539
  • Magariños, A., McEwen, B., Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 11056-11061. , &
  • Homo-Delarche, F., Sex steroids, glucocorticoids, stress and autoimmunity (1991) J. Steroid Biochem. Mol. Biol., 40, pp. 619-637
  • Stranahan, A.M., Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons (2008) Nat. Neurosci., 11, pp. 309-317
  • Revsin, Y., Glucocorticoid receptor blockade normalizes hippocampal alterations and cognitive impairment in streptozotocin-induced type 1 diabetes mice (2008) Neuropsychopharmacology, , 1-12 Sept. 10 [Epub ahead of print]

Citas:

---------- APA ----------
Beauquis, J., Roig, P., De Nicola, A.F. & Saravia, F. (2009) . Neuronal plasticity and antidepressants in the diabetic brain. Annals of the New York Academy of Sciences, 1153, 203-208.
http://dx.doi.org/10.1111/j.1749-6632.2008.03983.x
---------- CHICAGO ----------
Beauquis, J., Roig, P., De Nicola, A.F., Saravia, F. "Neuronal plasticity and antidepressants in the diabetic brain" . Annals of the New York Academy of Sciences 1153 (2009) : 203-208.
http://dx.doi.org/10.1111/j.1749-6632.2008.03983.x
---------- MLA ----------
Beauquis, J., Roig, P., De Nicola, A.F., Saravia, F. "Neuronal plasticity and antidepressants in the diabetic brain" . Annals of the New York Academy of Sciences, vol. 1153, 2009, pp. 203-208.
http://dx.doi.org/10.1111/j.1749-6632.2008.03983.x
---------- VANCOUVER ----------
Beauquis, J., Roig, P., De Nicola, A.F., Saravia, F. Neuronal plasticity and antidepressants in the diabetic brain. Ann. New York Acad. Sci. 2009;1153:203-208.
http://dx.doi.org/10.1111/j.1749-6632.2008.03983.x