Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

One of the main goals of chemistry is to understand the underlying principles of chemical reactions, in terms of both its reaction mechanism and the thermodynamics that govern it. Using hybrid quantum mechanics/molecular mechanics (QM/MM)-based methods in combination with a biased sampling scheme, it is possible to simulate chemical reactions occurring inside complex environments such as an enzyme, or aqueous solution, and determining the corresponding free energy profile, which provides direct comparison with experimental determined kinetic and equilibrium parameters. Among the most promising biasing schemes is the multiple steered molecular dynamics method, which in combination with Jarzynski's Relationship (JR) allows obtaining the equilibrium free energy profile, from a finite set of nonequilibrium reactive trajectories by exponentially averaging the individual work profiles. However, obtaining statistically converged and accurate profiles is far from easy and may result in increased computational cost if the selected steering speed and number of trajectories are inappropriately chosen. In this small review, using the extensively studied chorismate to prephenate conversion reaction, we first present a systematic study of how key parameters such as pulling speed, number of trajectories, and reaction progress are related to the resulting work distributions and in turn the accuracy of the free energy obtained with JR. Second, and in the context of QM/MM strategies, we introduce the Hybrid Differential Relaxation Algorithm, and show how it allows obtaining more accurate free energy profiles using faster pulling speeds and smaller number of trajectories and thus smaller computational cost. © 2016 Elsevier Inc.

Registro:

Documento: Artículo
Título:Steered Molecular Dynamics Methods Applied to Enzyme Mechanism and Energetics
Autor:Ramírez, C.L.; Martí, M.A.; Roitberg, A.E.
Filiación:FCEN, UBA, Buenos Aires, Argentina
University of Florida, Gainesville, FL, United States
Palabras clave:Free energy; Jarzynski relationship; Multiple time step; Nonequilibrium dynamics; chorismic acid; prephenate dehydratase; amidase; bacterial protein; chorismate mutase; cyclohexanecarboxylic acid derivative; cyclohexene derivative; N-acetyl-1-D-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase; prephenic acid; algorithm; analytic method; chemical reaction; computer simulation; energy transfer; enzyme mechanism; molecular dynamics; molecular mechanics; quantum mechanics; thermodynamics; Bacillus subtilis; chemistry; enzyme specificity; enzymology; kinetics; metabolism; molecular dynamics; Mycobacterium tuberculosis; quantum theory; static electricity; Algorithms; Amidohydrolases; Bacillus subtilis; Bacterial Proteins; Chorismate Mutase; Chorismic Acid; Cyclohexanecarboxylic Acids; Cyclohexenes; Kinetics; Molecular Dynamics Simulation; Mycobacterium tuberculosis; Quantum Theory; Static Electricity; Substrate Specificity; Thermodynamics
Año:2016
Volumen:578
Página de inicio:123
Página de fin:143
DOI: http://dx.doi.org/10.1016/bs.mie.2016.05.029
Título revista:Methods in Enzymology
Título revista abreviado:Methods Enzymol.
ISSN:00766879
CODEN:MENZA
CAS:chorismic acid, 617-12-9; prephenate dehydratase, 9044-88-6; amidase, 9012-56-0; chorismate mutase, 9068-30-8; Amidohydrolases; Bacterial Proteins; Chorismate Mutase; Chorismic Acid; Cyclohexanecarboxylic Acids; Cyclohexenes; N-acetyl-1-D-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase; prephenic acid
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00766879_v578_n_p123_Ramirez

Referencias:

  • Blumberger, J., Lamoureux, G., Klein, M.L., Peptide hydrolysis in thermolysin: Ab initio QM/MM investigation of the Glu143-assisted water addition mechanism (2007) Journal of Chemical Theory and Computation, 3 (5), pp. 1837-1850
  • Case, D.A., Darden, T.A., Cheatham, T.E.I.I.I., Simmerling, C.L., Wang, J., Duke, R.E., Kollman, P.A., AMBER 12 (2012), University of California San Francisco; Collin, D., Ritort, F., Jarzynski, C., Smith, S.B., Tinoco, I., Bustamante, C., Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies (2005) Nature, 437 (7056), pp. 231-234
  • Crespo, A., Marti, M.A., Estrin, D.A., Roitberg, A.E., Multiple-steering QM-MM calculation of the free energy profile in chorismate mutase (2005) Journal of the American Chemical Society, 127 (19), pp. 6940-6941
  • Crespo, A., Scherlis, D.A., Martí, M.A., Ordejón, P., Roitberg, A.E., Estrin, D.A., A DFT-based QM-MM approach designed for the treatment of large molecular systems: Application to chorismate mutase (2003) Journal of Physical Chemistry. B, 107 (49), pp. 13728-13736
  • Crooks, G.E., Nonequilibrium measurements of free energy differences for microscopically reversible markovian systems (1998) Journal of Statistical Physics, 90 (5-6), pp. 1481-1487
  • Crooks, G.E., Path-ensemble averages in systems driven far from equilibrium (2000) Physical Review E, 61 (3), pp. 2361-2366
  • Cui, Q., Elstner, M., Kaxiras, E., Frauenheim, T., Karplus, M., A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method (2001) The Journal of Physical Chemistry. B, 105 (2), pp. 569-585
  • de M Seabra, G., Walker, R.C., Elstner, M., Case, D.A., Roitberg, A.E., Implementation of the SCC-DFTB method for hybrid QM/MM simulations within the amber molecular dynamics package (2007) The Journal of Physical Chemistry. A, 111 (26), pp. 5655-5664
  • Hénin, J., Chipot, C., Overcoming free energy barriers using unconstrained molecular dynamics simulations (2004) The Journal of Chemical Physics, 121 (7), pp. 2904-2914
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple Amber force fields and development of improved protein backbone parameters (2006) Proteins, 65 (3), pp. 712-725
  • Jarzynski, C., Nonequilibrium equality for free energy differences (1997) Physical Review Letters, 78 (14), pp. 2690-2693
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) The Journal of Chemical Physics, 79 (2), pp. 926-935. , http://www.scopus.com/inward/record.url?eid=2-s2.0-0004016501&partnerID=40&md5=7af48df275648024bbd5981b9583c129, Retrieved from
  • Kast, P., Tewari, Y.B., Wiest, O., Hilvert, D., Houk, K.N., Goldberg, R.N., Thermodynamics of the conversion of chorismate to prephenate: Experimental results and theoretical predictions (1997) The Journal of Physical Chemistry. B, 101 (50), pp. 10976-10982
  • Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H., Kollman, P.A., The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method (1992) Journal of Computational Chemistry, 13 (8), pp. 1011-1021
  • Laio, A., Parrinello, M., Escaping free-energy minima (2002) Proceedings of the National Academy of Sciences of the United States of America, 99 (20), pp. 12562-12566
  • Lee Woodcock, H., Hodošček, M., Sherwood, P., Lee, Y.S., Schaefer, H.F., III, Brooks, B.R., Exploring the quantum mechanical/molecular mechanical replica path method: A pathway optimization of the chorismate to prephenate Claisen rearrangement catalyzed by chorismate mutase (2003) Theoretical Chemistry Accounts, 109 (3), pp. 140-148
  • Liphardt, J., Dumont, S., Smith, S.B., Tinoco, I., Bustamante, C., Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski's equality (2002) Science (New York, N.Y.), 296 (5574), pp. 1832-1835
  • Nitsche, M.A., Ferreria, M., Mocskos, E.E., González Lebrero, M.C., GPU accelerated implementation of density functional theory for hybrid QM/MM simulations (2014) Journal of Chemical Theory and Computation, 10, pp. 959-967
  • Ozer, G., Valeev, E.F., Quirk, S., Hernandez, R., Adaptive steered molecular dynamics of the long-distance unfolding of neuropeptide Y (2010) Journal of Chemical Theory and Computation, 6 (10), pp. 3026-3038
  • Park, S., Khalili-Araghi, F., Tajkhorshid, E., Schulten, K., Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality (2003) The Journal of Chemical Physics, 119 (6), p. 3559
  • Perdew, J., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Physical Review Letters, 77 (18), p. 3865
  • Pohorille, A., Jarzynski, C., Chipot, C., Good practices in free-energy calculations (2010) The Journal of Physical Chemistry. B, 114 (32), pp. 10235-10253
  • Ranaghan, K.E., Ridder, L., Szefczyk, B., Sokalski, W.A., Hermann, J.C., Mulholland, A.J., Transition state stabilization and substrate strain in enzyme catalysis: Ab initio QM/MM modelling of the chorismate mutase reaction (2004) Organic & Biomolecular Chemistry, 2 (7), pp. 968-980
  • Romero, J.M., Martin, M., Ramirez, C.L., Dumas, V.G., Marti, M.A., Efficient calculation of enzyme reaction free energy profiles using a hybrid differential relaxation algorithm: Application to mycobacterial zinc hydrolases (2015) Advances in Protein Chemistry and Structural Biology, 100, pp. 33-65
  • Saira, O.-P., Yoon, Y., Tanttu, T., Möttönen, M., Averin, D.V., Pekola, J.P., Test of the Jarzynski and Crooks fluctuation relations in an electronic system (2012) Physical Review Letters, 109 (18), p. 180601
  • Smith, C.R., Smith, G.K., Yang, Z., Xu, D., Guo, H., Quantum mechanical/molecular mechanical study of anthrax lethal factor catalysis (2010) Theoretical Chemistry Accounts, 128 (1), pp. 83-90
  • Tuckerman, M., Berne, B.J., Martyna, G.J., Reversible multiple time scale molecular dynamics (1992) The Journal of Chemical Physics, 97 (3), p. 1990
  • Tuckerman, M.E., Parrinello, M., Integrating the Car–Parrinello equations. II. Multiple time scale techniques (1994) The Journal of Chemical Physics, 101 (2), p. 1316
  • Warshel, A., Karplus, M., Calculation of ground and excited state potential surfaces of conjugated molecules. I. Formulation and parametrization (1972) Journal of the American Chemical Society, 94 (16), pp. 5612-5625
  • Warshel, A., Levitt, M., Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme (1976) Journal of Molecular Biology, 103, pp. 227-249
  • Woodcock, H.L., Hodoscek, M., Brooks, B.R., Exploring SCC-DFTB paths for mapping QM/MM reaction mechanisms (2007) The Journal of Physical Chemistry. A, 111 (26), pp. 5720-5728
  • Xiong, H., Crespo, A., Marti, M., Estrin, D., Roitberg, A.E., Free energy calculations with non-equilibrium methods: Applications of the Jarzynski relationship (2006) Theoretical Chemistry Accounts, 116 (1-3), pp. 338-346
  • Xu, D., Guo, H., Quantum mechanical/molecular mechanical and density functional theory studies of a prototypical zinc peptidase (carboxypeptidase A) suggest a general acid-general base mechanism (2009) Journal of the American Chemical Society, 131 (28), pp. 9780-9788
  • Zhang, C., Wu, S., Xu, D., Catalytic mechanism of angiotensin-converting enzyme and effects of the chloride ion (2013) The Journal of Physical Chemistry. B, 117 (22), pp. 6635-6645
  • Zheng, L., Chen, M., Yang, W., Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems (2008) Proceedings of the National Academy of Sciences of the United States of America, 105 (51), pp. 20227-20232
  • Zwanzig, R.W., High-temperature equation of state by a perturbation method. I. Nonpolar gases (1954) The Journal of Chemical Physics, 22 (8), p. 1420

Citas:

---------- APA ----------
Ramírez, C.L., Martí, M.A. & Roitberg, A.E. (2016) . Steered Molecular Dynamics Methods Applied to Enzyme Mechanism and Energetics. Methods in Enzymology, 578, 123-143.
http://dx.doi.org/10.1016/bs.mie.2016.05.029
---------- CHICAGO ----------
Ramírez, C.L., Martí, M.A., Roitberg, A.E. "Steered Molecular Dynamics Methods Applied to Enzyme Mechanism and Energetics" . Methods in Enzymology 578 (2016) : 123-143.
http://dx.doi.org/10.1016/bs.mie.2016.05.029
---------- MLA ----------
Ramírez, C.L., Martí, M.A., Roitberg, A.E. "Steered Molecular Dynamics Methods Applied to Enzyme Mechanism and Energetics" . Methods in Enzymology, vol. 578, 2016, pp. 123-143.
http://dx.doi.org/10.1016/bs.mie.2016.05.029
---------- VANCOUVER ----------
Ramírez, C.L., Martí, M.A., Roitberg, A.E. Steered Molecular Dynamics Methods Applied to Enzyme Mechanism and Energetics. Methods Enzymol. 2016;578:123-143.
http://dx.doi.org/10.1016/bs.mie.2016.05.029