Marti, M.A.; Capece, L.; Bidon-Chanal, A.; Crespo, A.; Guallar, V.; Luque, F.J.; Estrin, D.A. "Nitric Oxide Reactivity with Globins as Investigated Through Computer Simulation" (2008) Methods in Enzymology. 437:477-498
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


This chapter reviews the application of classical and quantum-mechanical atomistic simulation tools used in the investigation of several relevant issues in nitric oxide reactivity with globins and presents different simulation strategies based on classical force fields: standard molecular dynamics, essential dynamics, umbrella sampling, multiple steering molecular dynamics, and a novel technique for exploring the protein energy landscape. It also presents hybrid quantum-classical schemes as a tool to obtain relevant information regarding binding energies and chemical reactivity of globins. As illustrative examples, investigations of the structural flexibility, ligand migration profiles, oxygen affinity, and reactivity toward nitric oxide of truncated hemoglobin N of Mycobacterium tuberculosis are presented. © 2008 Elsevier Inc. All rights reserved.


Documento: Artículo
Título:Nitric Oxide Reactivity with Globins as Investigated Through Computer Simulation
Autor:Marti, M.A.; Capece, L.; Bidon-Chanal, A.; Crespo, A.; Guallar, V.; Luque, F.J.; Estrin, D.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
Catalan Institute for Research and Advanced Studies (ICREA), Computational Biology Program, Barcelona Supercomputing Center, Barcelona, Spain
Palabras clave:globin; heme; hemoglobin; ligand; nitric oxide; oxygen; protein; myoglobin; nitric oxide; oxygen; truncated hemoglobin; chemical reaction; computer simulation; energy; molecular dynamics; molecular mechanics; mutant; Mycobacterium tuberculosis; nonhuman; oxygen affinity; parameter; priority journal; quantum mechanics; review; sampling; wild type; biomechanics; chemical structure; chemistry; comparative study; drug detoxification; energy metabolism; enzyme specificity; kinetics; metabolism; protein binding; protein folding; quantum theory; signal transduction; theoretical model; Mycobacterium tuberculosis; Biomechanics; Computer Simulation; Energy Metabolism; Globins; Heme; Kinetics; Metabolic Detoxication, Drug; Models, Molecular; Models, Theoretical; Mycobacterium tuberculosis; Myoglobin; Nitric Oxide; Oxygen; Protein Binding; Protein Folding; Quantum Theory; Signal Transduction; Substrate Specificity; Truncated Hemoglobins
Página de inicio:477
Página de fin:498
Título revista:Methods in Enzymology
Título revista abreviado:Methods Enzymol.
CAS:heme, 14875-96-8; hemoglobin, 9008-02-0; nitric oxide, 10102-43-9; oxygen, 7782-44-7; protein, 67254-75-5; Globins, 9004-22-2; Heme, 14875-96-8; Myoglobin; Nitric Oxide, 10102-43-9; Oxygen, 7782-44-7; Truncated Hemoglobins


  • Amadei, A., Linssen, A.B.M., Berendsen, H.J.C., Essential dynamics of proteins (1993) Proteins, 17, pp. 412-425
  • Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R., Molecular dynamics with coupling to an external bath (1984) J. Chem. Phys., 81, pp. 3684-3690
  • Bidon-Chanal, A., Marti, M.A., Crespo, A., Milani, M., Orozco, M., Bolognesi, M., Luque, F.J., Estrin, D.A., Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N (2006) Proteins, 64, pp. 457-464
  • Blomberg, L.M., Blomberg, M.R., Siegbahn, P.E., A theoretical study of myoglobin working as a nitric oxide scavenger (2004) J. Biol. Inorg. Chem., 9, pp. 923-935
  • Blundell, T.L., Sibanda, B.L., Sternberg, M.J.E., Thornton, J.M., Knowledge-based prediction of protein structures and the design of novel molecules (1987) Nature, 326, pp. 347-352
  • Borrelli, K.W., Vitalis, A., Alcantara, R., Guallar, V., PELE: Protein Energy Landscape Exploration. A novel Monte Carlo based technique (2005) J. Chem. Theory Comput., 1, pp. 1304-1311
  • Brunori, M., Bourgeois, D., Vallone, B., The structural dynamics of myoglobin (2004) J. Struct. Biol., 147, pp. 223-234
  • Capece, L., Marti, M.A., Crespo, A., Doctorovich, F., Estrin, D.A., Heme protein oxygen affinity regulation exerted by proximal effects (2006) J. Am. Chem. Soc., 128, pp. 12455-12461
  • Chu, K., Vojtchovsky, J., McMahon, B.H., Sweet, R.M., Berendzen, J., Schlichting, I., Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin (2000) Nature, 403, pp. 921-923
  • Copeland, D.M., Soares, A.S., West, A.H., Richter-Addo, G.B., Crystal structures of the nitrite and nitric oxide complexes of horse heart myoglobin (2006) J. Inorg. Biochem., 100, pp. 1413-1425
  • Copeland, D.M., West, A.H., Richter-Addo, G.B., Crystal structures of ferrous horse heart myoglobin complexed with nitric oxide and nitrosoethane (2003) Proteins, 53, pp. 182-192
  • Crespo, A., Marti, M.A., Estrin, D.A., Roitberg, A.E., Multiple-steering QM-MM calculation of the free energy profile in chorismate mutase (2005) J. Am. Chem. Soc., 127, pp. 6940-6941
  • Crespo, A., Marti, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpi, J.L., Luque, F.J., Estrin, D.A., Theoretical study of the truncated hemoglobin HbN: Exploring the molecular basis of the NO detoxification mechanism (2005) J. Am. Chem. Soc., 127, pp. 4433-4444
  • Crespo, A., Scherlis, D.A., Marti, M.A., Ordejón, P., Roitberg, A.E., Estrin, D.A., A DFT-based QM-MM approach designed for the treatment of large molecular systems: Application to chorismate mutase (2003) J. Phys. Chem. B, 107, pp. 13728-13736
  • Deeth, R.J., Fey, N., The performance of nonhybrid density functionals for calculating the structures and spin states of Fe(II) and Fe(III) complexes (2004) J. Comput. Chem., 25, pp. 1840-1848
  • Dwyer, M.A., Looger, L.L., Hellinga, H.W., Computational design of a biologically active enzyme (2004) Science, 304, pp. 1967-1971
  • Eich, R.F., Li, T., Lemon, D.D., Doherty, D.H., Curry, S.R., Aitken, J.F., Mathews, A.J., Olson, J.S., Mechanism of NO-induced oxidation of myoglobin and hemoglobin (1996) Biochemistry, 35, pp. 6976-6983
  • Eichinger, M., Tavan, P., Hutter, J., Parrinello, M., A hybrid method for solutes in complex solvents: Density functional theory combined with empirical force fields (1999) J. Chem. Phys., 110, pp. 10452-10467
  • Elola, M.D., Estrin, D.A., Laria, D., Hybrid quantum classical molecular dynamics simulation of the proton-transfer reaction of HO- with HBr in aqueous clusters (1999) J. Phys. Chem. A, 103, pp. 5105-5112
  • Fernandez, M.L., Marti, M.A., Crespo, A., Estrin, D.A., Proximal effects in the modulation of nitric oxide synthase reactivity: A QM-MM study (2005) J. Biol. Inorg. Chem., 10, pp. 595-604
  • Franzen, S., Spin-dependent mechanism for diatomic ligand binding to heme (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 16754-16759
  • Friesner, R.A., Guallar, V., Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis (2005) Annu. Rev. Phys. Chem., 56, pp. 389-427
  • Gardner, A.M., Martin, L.A., Gardner, P.R., Dou, Y., Olson, J.S., Steady-state and transient kinetics of Escherichia coli nitric-oxide dioxygenase (flavohemoglobin): The B10 tyrosine hydroxyl is essential for dioxygen binding and catalysis (2000) J. Biol. Chem., 275, pp. 12581-12589
  • Gardner, P.R., Gardner, A.M., Brashear, W.T., Suzuki, T., Hvitved, A.N., Setchell, K.D., Olson, J.S., Hemoglobins dioxygenate nitric oxide with high fidelity (2006) J. Inorg. Biochem., 100, pp. 542-550
  • Guallar, V., Friesner, R.A., Cytochrome P450CAM enzymatic catalysis cycle: A quantum mechanics/molecular mechanics study (2004) J. Am. Chem. Soc., 126, pp. 8501-8508
  • Hummer, G., Szabo, A., Free energy reconstruction from nonequilibrium single-molecule pulling experiments (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 3658-3661
  • Jacobson, M.P., Friesner, R.A., Xiang, Z., Honig, B., On the role of the crystal environment in determining protein side-chain conformations (2002) J. Mol. Biol., 320, pp. 597-608
  • Jarzynski, C., Nonequilibrium equality for free energy differences (1997) Phys. Rev. Lett., 78, pp. 2690-2693
  • Karplus, M., Petsko, G.A., Molecular dynamics simulations in biology (1990) Nature, 347, pp. 631-639
  • Leach, A.R., (2001) "Molecular Modelling: Principles and Applications.", , Pearson Education EMA
  • MacKerell Jr., A.D., Bashford, D., Bellott, M., Dunbrack Jr., R.L., Evanseck, J.D., Field, M.J., Fischer, S., Karplus, M., All-atom empirical potential for molecular modeling and dynamics studies of proteins (1998) J. Phys. Chem. B, 102, pp. 3586-3616
  • Marti, M.A., Bikiel, D.E., Crespo, A., Nardini, M., Bolognesi, M., Estrin, D.A., Two distinct heme distal site states define Cerebratulus lacteus mini-hemoglobin oxygen affinity (2006) Proteins, 62, pp. 641-648
  • Marti, M.A., Capece, L., Crespo, A., Doctorovich, F., Estrin, D.A., Nitric oxide interaction with cytochrome c′ and its relevance to guanylate cyclase: Why does the iron histidine bond break? (2005) J. Am. Chem. Soc., 127, pp. 7721-7728
  • Marti, M.A., Crespo, A., Bari, S.E., Doctorovich, F.A., Estrin, D.A., QM-MM study of nitrite reduction by nitrite reductase of Pseudomonas aeruginosa (2004) J. Phys. Chem. B, 108, pp. 18073-18080
  • Marti, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E., Scherlis, D.A., Estrin, D.A., Dioxygen affinity in heme proteins investigated by computer simulation (2006) J. Inorg. Biochem., 100, pp. 761-770
  • Milani, M., Pesce, A., Ouellet, Y., Ascenzi, P., Guertin, M., Bolognesi, M., Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme (2001) EMBO J., 20, pp. 3902-3909
  • Olson, J.S., Phillips Jr., G.N., Myoglobin discriminates between O2, NO, and CO by electrostatic interactions with the bound ligand (1997) J. Biol. Inorg. Chem., 2, pp. 544-552
  • Onufriev, A., Bashford, D., Case, D.A., Exploring protein native states and large-scale conformational changes with a modified generalized born model (2004) Proteins, 55, pp. 383-394
  • Ouellet, H., Ouellet, Y., Richard, C., Labarre, M., Wittenberg, B., Wittenberg, J., Guertin, M., Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 5902-5907
  • Park, S., Schulten, K., Calculating potentials of mean force from steered molecular dynamics simulations (2004) J. Chem. Phys., 120, pp. 5946-5961
  • Perlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham III, T.E., DeBolt, S., Ferguson, D., Kollman, P., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules (1995) Comput. Phys. Commun., 91, pp. 1-41
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
  • Scott, E.E., Gibson, Q.H., Olson, J.S., Mapping the pathways for O2 entry into and exit from myoglobin (2001) J. Biol. Chem., 276, pp. 5177-5188
  • Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys. Cond. Matt., 14, pp. 2745-2779
  • Torrie, G.M., Valleau, J.P., Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling (1977) J. Comput. Phys., 23, pp. 187-199
  • Wang, J., Cieplak, P., Kollman, P.A., How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? (2000) J. Comput. Chem., 21, pp. 1049-1074
  • Warshel, A., Levitt, M., Theoretical studies of enzymatic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme (1976) J. Mol. Biol., 103, pp. 227-249
  • Xiong, H., Crespo, A., Marti, M., Estrin, D., Roitberg, A.E., Free energy calculations with non-equilibrium methods: Applications of the Jarzynski relationship (2006) Theor. Chem. Acc., 116, pp. 338-346


---------- APA ----------
Marti, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F.J. & Estrin, D.A. (2008) . Nitric Oxide Reactivity with Globins as Investigated Through Computer Simulation. Methods in Enzymology, 437, 477-498.
---------- CHICAGO ----------
Marti, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F.J., et al. "Nitric Oxide Reactivity with Globins as Investigated Through Computer Simulation" . Methods in Enzymology 437 (2008) : 477-498.
---------- MLA ----------
Marti, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F.J., et al. "Nitric Oxide Reactivity with Globins as Investigated Through Computer Simulation" . Methods in Enzymology, vol. 437, 2008, pp. 477-498.
---------- VANCOUVER ----------
Marti, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F.J., et al. Nitric Oxide Reactivity with Globins as Investigated Through Computer Simulation. Methods Enzymol. 2008;437:477-498.