Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Registro:

Documento: Artículo
Título:Mixed finite element methods
Autor:Durán, R.G.
Filiación:Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria Pabellón I, 1428 Buenos Aires, Argentina
Año:2008
Volumen:1939
Página de inicio:1
Página de fin:44
DOI: http://dx.doi.org/10.1007/978-3-540-78319-0_1
Título revista:Lecture Notes in Mathematics
Título revista abreviado:Lect. Notes Math.
ISSN:00758434
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00758434_v1939_n_p1_Duran

Referencias:

  • Acosta, G., Durán, R.G., The maximum angle condition for mixed and non conforming elements: Application to the Stokes equations (2000) SIAM J. Numer. Anal, 37, pp. 18-36
  • Acosta, G., Durán, R.G., Muschietti, M.A., Solutions of the divergence operator on John domains (2006) Adv. Math, 206, pp. 373-401
  • Ainsworth, M., Robust a posteriori error estimation for nonconforming finite element approximations (2005) SIAM J. Numer. Anal, 42, pp. 2320-2341
  • Alonso, A., Error estimator for a mixed method (1996) Numer. Math, 74, pp. 385-395
  • Arnold, D.N., Boffi, D., Falk, R.S., Quadrilateral H(div) finite elements (2005) SIAM J. Numer. Anal, 42, pp. 2429-2451
  • Arnold, D.N., Brezzi, F., Mixed and nonconforming finite element methods implementation, postprocessing and error estimates (1985) R.A.I.R.O., Model. Math. Anal. Numer, 19, pp. 7-32
  • Arnold, D.N., Scott, L.R., Vogelius, M., Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon (1988) Ann. Scuola Norm. Sup. Pisa, pp. 169-192. , Cl. SciSerie IV, XV
  • Babuška, I., Error bounds for finite element method (1971) Numer. Math, 16, pp. 322-333
  • Babuška, I., The finite element method with lagrangian multipliers (1973) Numer. Math, 20, pp. 179-192
  • Bermùdez, A., Gamallo, P., Nogueiras, M.R., Rodríguez, R., Approximation of a structural acoustic vibration problem by hexhaedral finite elements (2006) IMA J. Numer. Anal, 26, pp. 391-421
  • Bramble, J.H., Xu, J.M., Local post-processing technique for improving the accuracy in mixed finite element approximations (1989) SIAM J. Numer. Anal, 26, pp. 1267-1275
  • Brenner, S., Scott, L.R., (1994) The Mathematical Analysis of Finite Element Methods, , Springer, Berlin Heidelberg New York
  • Brezzi, F., On the existence, uniqueness and approximation of saddle point problems arising from lagrangian multipliers (1974) R.A.I.R.O. Anal. Numer, 8, pp. 129-151
  • Brezzi, F., Douglas, L., Durán, R., Fortin, M., Mixed finite elements for second order elliptic problems in three variables (1987) Numer. Math, 51, pp. 237-250
  • Brezzi, F., Douglas, L., Fortin, M., Marini, L.D., Efficient rectangular mixed finite elements in two and three space variables (1987) Math. Model. Numer. Anal, 21, pp. 581-604
  • Brezzi, F., Douglas, J., Marini, L.D., Two families of mixed finite elements for second order elliptic problems (1985) Numer. Math, 47, pp. 217-235
  • Brezzi, F., Fortin, M., (1991) Mixed and Hybrid Finite Element Methods, , Springer, Berlin Heidelberg New York
  • Carstensen, C., A posteriori error estimate for the mixed finite element method (1997) Math. Comp, 66, pp. 465-476
  • Ciarlet, P.G., (1978) The Finite Element Method for Elliptic Problems, , North Holland
  • Ciarlet, P.G., Mathematical Elasticity (1988) Three-Dimensional Elasticity, 1. , North Holland
  • Clément, P., Approximation by finite element function using local regularization (1975) RAIRO, R-2, pp. 77-84
  • Crouzeix, M., Raviart, P.A., Conforming and non-conforming finite element methods for solving the stationary Stokes equations (1973) R.A.I.R.O. Anal. Numer, 1, pp. 33-76
  • Dari, E., Durán, R.G., Padra, C., Vampa, V., A posteriori error estimators for nonconforming finite element methods (1996) Math. Model. Numer. Anal, 30, pp. 385-400
  • Douglas, J., Roberts, L.E., Global estimates for mixed methods for second order elliptic equations (1985) Math. Comp, 44, pp. 39-52
  • Dupont, T., Scott, L.R., Polynomial approximation of functions in Sobolev spaces (1980) Math. Comp, 34, pp. 441-463
  • Durán, R.G., On polynomial Approximation in Sobolev Spaces (1983) SIAM J. Numer. Anal, 20, pp. 985-988
  • Durán, R.G., Error Analysis in Lp for Mixed Finite Element Methods for Linear and quasilinear elliptic problems (1988) R.A.I.R.O. Anal. Numer, 22, pp. 371-387
  • Durán, R.G., Error estimates for anisotropic finite elements and applications (2006) Proceedings of the International Congress of Mathematicians, pp. 1181-1200
  • Durán, R.G., Lombardi, A.L., Error estimates for the Raviart-Thomas interpolation under the maximum angle condition, , http://mate.dm.uba.ar/rduran/papers/dl3.pdf, preprint
  • Durán, R.G., Muschietti, M.A., An explicit right inverse of the divergence operator which is continuous in weighted norms (2001) Studia Math, 148, pp. 207-219
  • Falk, R.S., Osborn, L., Error estimates for mixed methods (1980) R.A.I.R.O. Anal. Numer, 4, pp. 249-277
  • Fortin, M., An analysis of the convergence of mixed finite element methods (1977) R.A.I.R.O. Anal. Numer, 11, pp. 341-354
  • Gagliardo, E., Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili (1957) Rend. Sem. Mat. Univ. Padova, 27, pp. 284-305
  • Gastaldi, L., Nochetto, R.H., Optimal L∞ -error estimates for nonconforming and mixed finite element methods of lowest order (1987) Numer. Math, 50, pp. 587-611
  • Gastaldi, L., Nochetto, R.H., On L∞ - accuracy of mixed finite element methods for second order elliptic problems (1988) Mat. Aplic. Comp, 1, pp. 13-39
  • Gilbarg, D., Trudinger, N.S., (1983) Elliptic Partial Differential Equations of Second Order, , Springer, Berlin Heidelberg New York
  • Girault, V., Raviart, P.A., (1986) Element Methods for Navier-Stokes Equations, , Springer, Berlin Heidelberg New York
  • Grisvard, P., (1985) Elliptic Problems in Nonsmooth Domain, , Pitman, Boston
  • Lovadina, C., Stenberg, R., Energy norm a posteriori error estimates for mixed finite element methods (2006) Math. Comp, 75, pp. 1659-1674
  • Marini, L.D., An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method (1985) SIAM J. Numer. Anal, 22, pp. 493-496
  • Nédélec, J.C., Mixed finite elements in IR3 (1980) Numer. Math, 35, pp. 315-341
  • Nédélec, J.C., A new family of mixed finite elements in IR3 (1986) Numer. Math, 50, pp. 57-81
  • Payne, L.E., Weinberger, H.F., An optimal Poincaré inequality for convex domains (1960) Arch. Rat. Mech. Anal, 5, pp. 286-292
  • Raviart, P.A., Thomas, J.M., A mixed finite element method for second order elliptic problems (1977) Lectures Notes in Mathematics, 606. , Mathematical Aspects of the Finite Element Method, I. Galligani, E. Magenes, eds, Springer, Berlin Heidelberg New York
  • Roberts, L.E., Thomas, J.M., Mixed and Hybrid Methods in Handbook of Numerical Analysis (1989) Finite Element Methods (Part 1), 2. , P. G. Ciarlet and L L. Lions, eds, North Holland
  • Schöberl, J., (2001) Commuting quasi-interpolation operators for mixed finite elements, , Preprint ISC-01-10-MATH, Texas A&M University
  • Scott, L.R., Zhang, S., Finite element interpolation of non-smooth functions satisfying boundary conditions (1990) Math. Comp, 54, pp. 483-493
  • Stenberg, R., Postprocessing schemes for some mixed finite elements (1991) RAIRO, Model. Math. Anal. Numer, 25, pp. 151-167
  • Thomas, J.M., (1977) Sur l'Analyse Numérique des Méthodes d'Eléments Finis Hybrides et Mixtes, , Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris
  • Verfürth, R., A posteriori error estimators for the Stokes equations (1989) Numer. Math, 55, pp. 309-325
  • Verfürth, R., A note on polynomial approximation in Sobolev spaces (1999) RAIRO M2AN, 33, pp. 715-719
  • Verfürth, R., (1996) A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, , Wiley, New York

Citas:

---------- APA ----------
(2008) . Mixed finite element methods. Lecture Notes in Mathematics, 1939, 1-44.
http://dx.doi.org/10.1007/978-3-540-78319-0_1
---------- CHICAGO ----------
Durán, R.G. "Mixed finite element methods" . Lecture Notes in Mathematics 1939 (2008) : 1-44.
http://dx.doi.org/10.1007/978-3-540-78319-0_1
---------- MLA ----------
Durán, R.G. "Mixed finite element methods" . Lecture Notes in Mathematics, vol. 1939, 2008, pp. 1-44.
http://dx.doi.org/10.1007/978-3-540-78319-0_1
---------- VANCOUVER ----------
Durán, R.G. Mixed finite element methods. Lect. Notes Math. 2008;1939:1-44.
http://dx.doi.org/10.1007/978-3-540-78319-0_1