Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

One of the most common environmental stressors is a shortage or suboptimal quality of food, thus all animals deal with periods of starvation. In the present study we examine variation in starvation resistance, longevity and body lipid content and the correlations between traits along an environmental gradient using isofemale lines recently derived from natural populations of Drosophila melanogaster from South America. The use of isofemale lines and controlled rearing laboratory conditions allows us to investigate within and among population components of genetic variation and the potential associations among starvation resistance, longevity and body lipid content. All these traits were analyzed separately in females and males, improving our understanding of sexual dimorphism. Our results revealed significant differences among populations in starvation resistance and longevity. Actually, the opposing latitudinal cline detected for starvation resistance suggests that natural selection played an essential role in shaping the pattern of geographic variation in this trait. Moreover, we also detected a positive relationship between starvation resistance and body lipid content in both sexes, providing evidence for a physiological and/or evolutionary association between these traits. Conversely, starvation resistance was not correlated with longevity indicating that these traits might be enabled to evolve independently. Finally, our study reveals that there is abundant within population genetic variation for all traits that may be maintained by sex-specific effects. © 2013 Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:Latitudinal Variation in Starvation Resistance is Explained by Lipid Content in Natural Populations of Drosophila melanogaster
Autor:Goenaga, J.; Fanara, J.J.; Hasson, E.
Filiación:Instituto de Ecología Genética y Evolución de Buenos Aires, Departamento de Ecología Genética y Evolución, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428 EHA Buenos Aires, Argentina
Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
Palabras clave:Drosophila melanogaster; Genetic correlation; Genetic variation; Genotype × sex interaction; Latitudinal cline; Starvation resistance; Animalia; Drosophila melanogaster
Año:2013
Volumen:40
Número:4
Página de inicio:601
Página de fin:612
DOI: http://dx.doi.org/10.1007/s11692-013-9235-6
Título revista:Evolutionary Biology
Título revista abreviado:Evol. Biol.
ISSN:00713260
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00713260_v40_n4_p601_Goenaga

Referencias:

  • Aguila, J.R., Suszko, J., Gibbs, A.G., Hoshizaki, D.K., The role of larval fat cells in adult Drosophila melanogaster (2007) Journal of Experimental Biology, 210 (6), pp. 956-963
  • Archer, M.A., Phelan, J.P., Beckman, K.A., Rose, M.R., Breakdown in correlations during laboratory evolution. II. Selection on stress resistance in Drosophila populations (2003) Evolution, 57 (3), pp. 536-543
  • Arrese, E.L., Soulages, J.L., Insect fat body: Energy metabolism and regulation (2010) Annual Review of Entomology, 55, pp. 207-225
  • Arthur, A.L., Weeks, A.R., Sgrò, C.M., Investigating latitudinal clines for life history and stress resistance traits in Drosophila simulans from eastern Australia (2008) Journal of Evolutionary Biology, 21 (6), pp. 1470-1479
  • Ayroles, J.F., Carbone, M.A., Stone, E.A., Jordan, K.W., Lyman, R.F., Systems genetics of complex traits in Drosophila melanogaster (2009) Nature Genetics, 41 (3), pp. 299-307
  • Baldal, E.G., Bbrakefield, P.M., Zwaan, B.J., Multitrait evolution in lines of Drosophila melanogaster selected for increased starvation resistance: The role of metabolic rate and implications for the evolution of longevity (2006) Evolution, 60 (7), pp. 1435-1444
  • Ballard, W.O., Melvin, R.G., Simpson, S.J., Starvation resistance is positively correlated with body lipid proportion in five wild caught Drosophila simulans populations (2008) Journal of Insect Physiology, 54 (9), pp. 1371-1376
  • Bjedov, I., Toivonen, J.M., Kerr, F., Slack, C., Jacobson, J., Foley, A., Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster (2010) Cell Metabolism, 11 (1), pp. 35-46
  • Boucher, L., Huignard, J., Transfer of male secretions from the spermatophore to the female insect Caryedon serratus (OI.): Analysis of the possible trophic role of these secretions (1987) Journal of Insect Physiology, 33 (12), pp. 949-957
  • Boulétreau-Merle, J., Fouillet, P., How to overwinter and be a founder: Egg-retention phenotypes and mating status in Drosophila melanogaster (2002) Evolutionary Ecology, 16 (4), pp. 309-332
  • Britton, J.S., Lockwood, W.K., Li, L., Cohen, S.M., Edgar, B.A., Drosophila's insulin/pi3-kinase pathway coordinates cellular metabolism with nutritional conditions (2002) Developmental Cell, 2 (2), pp. 239-249
  • Butlin, R.K., Woodhatch, C.W., Hewitt, G.M., Male spermatophore investment increases female fecundity in a grasshopper (1987) Evolution, 41 (1), pp. 221-225
  • Butterworth, F.M., Bodenstein, D., King, R.C., Adipose tissue of Drosophila melanogaster. I. An experimental study of larval fat body (1965) Journal of Experimental Zoology, 158 (2), pp. 141-153
  • Carvalho, G.B., Kapahi, P., Anderson, D.J., Benzer, S., Allocrine modulation of feeding behavior by the sex peptide of Drosophila (2006) Current Biology, 16 (7), pp. 692-696
  • Chippindale, A.K., Chu, T.J.F., Rose, M.R., Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster (1996) Evolution, 50 (2), pp. 753-766
  • Colombani, J., Raisin, S., Pantalacci, S., Radimerski, T., Montagne, J., Leopold, P., A nutrient sensor mechanism controls Drosophila growth (2003) Cell, 114 (6), pp. 739-749
  • De Luca, M., Roshina, N.V., Geiger-Thornsberry, G.L., Lyman, R.F., Pasyukova, E.G., Mackay, T.F.C., Dopa decarboxylase (Ddc) affects variation in Drosophila longevity (2003) Nature Genetics, 34 (4), pp. 429-433
  • Edvardsson, M., Female Callosobruchus maculatus mate when they are thirsty: Resource-rich ejaculates as mating effort in a beetle (2007) Animal Behaviuor, 74 (2), pp. 183-188
  • Fairbairn, D.J., Blanckenhorn, W.U., Székely, T., (2007) Sex Size and Gender Roles: Evolutionary Studies of Sexual Dimorphism, , Oxford: Oxford University Press
  • Falconer, D.S., The problem of environment and selection (1952) American Naturalist, 86 (830), pp. 293-298
  • Fallis, L.C., Fanara, J.J., Morgan, T.J., Genetic variation in heat-stress tolerance among South American Drosophila populations (2011) Genetica, 139 (10), pp. 1331-1337
  • Folguera, G., Ceballos, S., Spezzi, L., Fanara, J.J., Hasson, E., Clinal variation in developmental time and viability and the response to thermal treatments in two species of Drosophila (2008) Biological Journal of the Linnean Society, 95 (2), pp. 233-245
  • Force, A.G., Staples, T., Soliman, S., Arking, R., Comparative biochemical and stress analysis of genetically selected Drosophila strains with different longevities (1995) Developmental Genetic, 17 (4), pp. 340-351
  • Goenaga, J., Fanara, J.J., Hasson, E., A quantitative genetic study of starvation resistance at different geographic scales in natural populations of Drosophila melanogaster (2010) Genetic Research, 92 (4), pp. 253-259
  • Goenaga, J., Fanara, J.J., Hasson, E., The effect of mating on starvation resistance in natural populations of Drosophila melanogaster (2012) Evolutionary Ecology, 26 (4), pp. 813-823
  • Griffiths, J.A., Schiffer, M., Hoffmann, A.A., Clinal variation and laboratory adaptation in the rainforest species Drosophila birchii for stress resistance wing size wing shape and development time (2005) Journal of Evolutionary Biology, 18 (1), pp. 213-222
  • Hahn, D.A., Denlinger, D.L., Meeting the energetic demands of insect diapause: Nutrient storage and utilization (2007) Journal of Insect Physiology, 53 (8), pp. 760-773
  • Hallas, R., Schiffer, M., Hoffmann, A.A., Clinal variation in Drosophila serrata for stress resistance and body size (2002) Genetics Research, 79 (2), pp. 141-148
  • Hansen, M., Flatt, T., Aguilaniu, H., Reproduction, fat metabolism, and life span: What is the connection? (2013) Cell Metabomis, 17 (8), pp. 10-19
  • Harbison, S.T., Chang, S., Kamdar, K.P., Mackay, T.F.C., Quantitative genomics of starvation stress resistance in Drosophila (2005) Genome Biology, 6, pp. R36. , doi:10.1186/gb-2005-6-4-r36
  • Harbison, S.T., Yamamoto, A.H., Fanara, J.J., Norga, K.K., Mackay, T.F.C., Quantitative trait loci affecting starvation resistance in Drosophila melanogaster (2004) Genetics, 166 (4), pp. 1807-1823
  • Harshman, L.G., Hoffmann, A.A., Laboratory selection experiments on life history and stress-related traits in Drosophila: What do they really tell us? (2000) Trends in Ecology & Evolution, 15 (1), pp. 32-36
  • Harshman, L.G., Hoffmann, A.A., Clark, A.G., Selection for starvation resistance in Drosophila melanogaster: Physiological correlates enzyme activities and multiple stress responses (1999) Journal of Evolutionary Biology, 12 (2), pp. 370-379
  • Harshman, L.G., Moore, K.M., Sty, M.A., Magwire, M.M., Stress resistance and longevity in selected lines of Drosophila melanogaster (1999) Neurobiology Aging, 20 (5), pp. 521-529
  • Harshman, L.G., Schmid, J.L., Evolution of starvation resistance in Drosophila melanogaster: Aspects of metabolism and counter-impact selection (1998) Evolution, 52 (6), pp. 1679-1685
  • Hoffmann, A.A., Anderson, A., Hallas, R., Opposing clines for high and low temperature resistance in Drosophila melanogaster (2002) Ecoogy Letters, 5 (5), pp. 614-618
  • Hoffmann, A.A., Hallas, R., Anderson, A.R., Telonis-Scott, M., Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster (2005) Journal of Evolutionary Biology, 18 (4), pp. 804-810
  • Hoffmann, A.A., Hallas, R., Sinclair, C., Mitrovski, P., Levels of variation in stress resistance in Drosophila among strains local populations and geographic regions: Patterns for desiccation starvation cold resistance and associated traits (2001) Evolution, 55 (8), pp. 1621-1630
  • Hoffmann, A.A., Parsons, P.A., (1991) Evolutionary Genetics and Environmental Stress, , New York: Oxford University Press
  • Hoffmann, A.A., Shirriffs, J., Scott, M., Relative importance of plastic vs genetic factors in adaptive differentiation: Geographical variation for stress resistance in Drosophila melanogaster from eastern Australia (2005) Functional Ecology, 19 (2), pp. 222-227
  • Ivy, T.M., Johnson, J.C., Sakaluk, S.K., Hydration benefits to courtship feeding in crickets (1999) Proceedings of the Royal Society of London. Series B, 266 (1428), pp. 1523-1527
  • Izquierdo, J.I., How does Drosophila melanogaster overwinter? (1991) Entomologia Experimentalis Et Applicata, 59 (1), pp. 51-58
  • Jumbo-Lucioni, P., Ayroles, J.F., Chambers, M.M., Jordan, K.W., Leips, J., Mackay, T.F.C., Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster (2010) BMC Genomics, 11, pp. 297-310
  • Kapahi, P., Zid, B.M., Harper, T., Koslover, D., Sapin, V., Benzer, S., Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway (2004) Current Biology, 14 (10), pp. 885-890
  • Karan, D., Dahiya, N., Munjal, A.K., Gibert, P., Moreteau, B., Parkash, R., Desiccation and starvation tolerance of adult Drosophila: Opposite latitudinal clines in natural populations of three different species (1998) Evolution, 52 (3), pp. 825-831
  • Karan, D., Parkash, R., Desiccation tolerance and starvation resistance exhibit opposite latitudinal clines in Indian geographical populations of Drosophila kikkawai (1998) Ecological Entomology, 23 (4), pp. 391-396
  • Kenny, M., Wilton, A., Ballard, W.O., Seasonal trade-off between starvationresistance and cold resistance in temperate wild-caught Drosophila simulans (2008) Australian Journal of Entomology, 47 (1), pp. 20-23
  • Lavagnino, N.J., Anholt, R.R., Fanara, J.J., Variation in genetic architecture of olfactory behaviour among wild-derived populations of Drosophila melanogaster (2008) Journal of Evolutionary Biology, 21 (4), pp. 988-996
  • Lee, G.H., Park, J.H., Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone encoding gene in Drosophila melanogaster (2004) Genetics, 167 (1), pp. 311-323
  • Lynch, M., Walsh, B., (1998) Genetics and Analysis of Quantitative Traits, , Sunderland: Sinauer
  • Magwire, M.M., Yamamoto, A., Carbone, M.A., Roshina, N.V., Symonenko, A.V., Pasyukova, E.G., Quantitative and molecular genetic analyses of mutations increasing Drosophila life span (2010) PLoS Genetics, 6 (7), pp. e1001037
  • Markow, T.A., O'Grady, P.M., Reproductive ecology of Drosophila (2008) Functional Ecology, 22 (5), pp. 747-759
  • Mensch, J., Carreira, V., Lavagnino, N., Goenaga, J., Folguera, G., Hasson, E., Stage-specific effects of Candidate heterochronic genes on variation in developmental time along an altitudinal cline of Drosophila melanogaster (2010) PLoS ONE, 5 (6), pp. e11229
  • Mitrovski, P., Hoffmann, A.A., Postponed reproduction as an adaptation to winter conditions in Drosophila melanogaster: Evidence for clinal variation under semi-natural conditions (2001) Proceedings of the Royal Society. B, 268 (1481), pp. 2163-2168
  • Muir, W.M., Nyquist, Y., Xu, S., Alternative partitioning of the genotype by environment interaction (1992) Theoretical and Applied Genetics, 84, pp. 193-200
  • Parkash, R., Aggarwal, D.D., Trade-off of energy metabolites as well as body color phenotypes for starvation and desiccation resistance in montane populations of Drosophila melanogaster (2012) Comparative Biochemistry and Physiology Part A, 161 (2), pp. 102-113
  • Parkash, R., Munjal, A.K., Evidence of independent climatic selection for desiccation and starvation tolerance in Indian tropical populations of Drosophila melanogaster (2000) Evolutionary Ecology Research, 2 (5), pp. 685-699
  • Pasyukova, E.G., Roshina, N.V., Mackay, T.F.C., Shuttle craft: A candidate quantitative trait gene for Drosophila lifespan (2004) Aging Cell, 3 (5), pp. 297-307
  • Phelan, J.P., Archer, M.A., Beckman, K.A., Chippindale, A.K., Nusbaum, T.J., Rose, M.R., Breakdown in correlations during laboratory evolution. I. Comparative analyses of Drosophila populations (2003) Evolution, 57 (3), pp. 527-535
  • Quinn, G.P., Keough, M.J., (2002) Experimental Design and Data Analysis for Biologists, , Cambridge: Cambridge University Press
  • Randall, D., Burggren, W., French, K., (1997) Eckert Animal Physiology: Mechanisms and Adaptations, , 4th edn., New York: W.H. Freeman Company
  • Rice, W.R., Chippindale, A.K., The evolution of hybrid infertility: Perpetual coevolution between gender-specific and sexual antagonistic genes (2002) Genetica, 116 (2-3), pp. 179-188
  • Rion, S., Kawecki, T.J., Evolutionary biology of starvation resistance: What we have learned from Drosophila (2007) Journal of Evolutionary Biology, 20 (5), pp. 1655-1664
  • Robertson, A., The sampling variance of the genetic correlation coefficient (1959) Biometric, 15 (3), pp. 469-485
  • Robinson, S.J.W., Zwaan, B., Partridge, L., Starvation resistance and adult body composition in a latitudinal cline of Drosophila melanogaster (2000) Evolution, 54 (5), pp. 1819-1824
  • Rose, M.R., Vu, L.N., Park, S.U., Graves, J.L., Selection on stress resistance increases longevity in Drosophila melanogaster (1992) Experimental Gerontology, 27 (2), pp. 241-250
  • Rush, B., Sandver, S., Bruer, J., Roche, R., Wells, M., Giebultowicz, J., Mating increases starvation resistance and decreases oxidative stress resistance in Drosophila melanogaster females (2007) Aging Cell, 6 (5), pp. 723-726
  • Salmon, A.B., Marx, D.B., Harshman, L.G., A cost of reproduction in Drosophila melanogaster: Stress susceptibility (2001) Evolution, 55 (8), pp. 1600-1608
  • Schmidt, P.S., Matzkin, L., Ippolito, M., Eanes, W.F., Geographic variation in diapause incidence life-history traits and climatic adaptation in Drosophila melanogaster (2005) Evolution, 59 (8), pp. 1721-1732
  • Schmidt, P.S., Paaby, A.B., Reproductive diapause and life-history clines in North American populations of Drosophila melanogaster (2008) Evolution, 62 (5), pp. 1204-1215
  • Schmidt, P.S., Paaby, A.B., Heschel, M.S., Genetic variance for diapauses expression and associated life histories in Drosophila melanogaster (2005) Evolution, 59 (12), pp. 2616-2625
  • Schwasinger-Schmidt, T.E., Kachman, S.D., Harshman, L.G., Evolution of starvation resistance in Drosophila melanogaster: Measurement of direct and correlated responses to artificial selection (2012) Journal of Evolutionary Biology, 25 (2), pp. 378-387
  • Service, P.M., Hutchinson, E.W., Mackinley, M.D., Rose, M.R., Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence (1985) Physiological Zoology, 58 (4), pp. 380-389
  • Sisodia, S., Singh, B.N., Resistance to environmental stress in Drosophila ananassae: Latitudinal variation and adaptation among populations (2010) Journal of Evolutionary Biology, 23 (9), pp. 1979-1988
  • Slack, C., Werz, C., Wieser, D., Alic, N., Foley, A., Stocke, H., Regulation of lifespan metabolism and stress responses by the Drosophila SH2B protein Lnk (2010) PLoS Genetics, , doi:10.1371/journal.pgen.1000881
  • (2007) Methods and applications, , Version 8. 0 StatSoft Tulsa, StatSoft
  • Vieira, C., Pasyukova, E.G., Zeng, A., Hackett, J.B., Lyman, R.F., Mackay, T.F.C., Genotype-environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster (2000) Genetics, 154 (1), pp. 213-227
  • Wang, M., Harshman, L.G., Nuzhdin, S.V., Quantitative trait loci for lipid content in Drosophila melanogaster (2005) Obesity Research, 13 (11), pp. 1891-1897
  • Wang, M., Lazebny, O., Harshman, L.G., Nuzhdin, S.V., Environment-dependent survival of Drosophila melanogaster: A quantitative genetic analysis (2004) Aging Cell, 3 (4), pp. 133-140
  • Wayne, M., Soundararajan, U., Harshman, L., Environmental stress and reproduction in Drosophila melanogaster: Starvation resistance ovariole numbers and early age egg production (2006) BMC Evolutionary Biology, , doi:10.1186/1471-2148-6-57
  • Zhang, H., Stallock, J.P., Ng, J.C., Reinhard, C., Neufeld, T.P., Regulation of cellular growth by the Drosophila target of rapamycin dTOR (2000) Genes & Development, 14 (21), pp. 2712-2724
  • Ziegler, R., van Antwerpen, R., Lipid uptake by insect oocytes (2006) Insect Biochemistry and Molecular Biology, 36 (4), pp. 264-272
  • Zwaan, B., Bijlsma, R., Hoekstra, R.F., Direct selection on life span in Drosophila melanogaster (1995) Evolution, 49 (4), pp. 649-659

Citas:

---------- APA ----------
Goenaga, J., Fanara, J.J. & Hasson, E. (2013) . Latitudinal Variation in Starvation Resistance is Explained by Lipid Content in Natural Populations of Drosophila melanogaster. Evolutionary Biology, 40(4), 601-612.
http://dx.doi.org/10.1007/s11692-013-9235-6
---------- CHICAGO ----------
Goenaga, J., Fanara, J.J., Hasson, E. "Latitudinal Variation in Starvation Resistance is Explained by Lipid Content in Natural Populations of Drosophila melanogaster" . Evolutionary Biology 40, no. 4 (2013) : 601-612.
http://dx.doi.org/10.1007/s11692-013-9235-6
---------- MLA ----------
Goenaga, J., Fanara, J.J., Hasson, E. "Latitudinal Variation in Starvation Resistance is Explained by Lipid Content in Natural Populations of Drosophila melanogaster" . Evolutionary Biology, vol. 40, no. 4, 2013, pp. 601-612.
http://dx.doi.org/10.1007/s11692-013-9235-6
---------- VANCOUVER ----------
Goenaga, J., Fanara, J.J., Hasson, E. Latitudinal Variation in Starvation Resistance is Explained by Lipid Content in Natural Populations of Drosophila melanogaster. Evol. Biol. 2013;40(4):601-612.
http://dx.doi.org/10.1007/s11692-013-9235-6