Abstract:
We tested a series of sulfur-containing linear bisphosphonates against Toxoplasma gondii, the etiologic agent of toxoplasmosis. The most potent compound (compound 22; 1-[(n-decylsulfonyl)ethyl]-1,1-bisphosphonic acid) is a sulfonecontaining compound, which had a 50% effective concentration (EC50) of 0.11 ± 0.02 μM against intracellular tachyzoites. The compound showed low toxicity when tested in tissue culture with a selectivity index of >2,000. Compound 22 also showed high activity in vivo in a toxoplasmosis mouse model. The compound inhibited the Toxoplasma farnesyl diphosphate synthase (TgFPPS), but the concentration needed to inhibit 50% of the enzymatic activity (IC50) was higher than the concentration that inhibited 50% of growth. We tested compound 22 against two other apicomplexan parasites, Plasmodium falciparum (EC50 of 0.6 ± 0.01 μM), the agent of malaria, and Cryptosporidium parvum (EC50 of ∼65 μM), the agent of cryptosporidiosis. Our results suggest that compound 22 is an excellent novel compound that could lead to the development of potent agents against apicomplexan parasites. © 2017 American Society for Microbiology. All Rights Reserved.
Registro:
Documento: |
Artículo
|
Título: | In Vitro and in Vivo activities of sulfur-containing linear bisphosphonates against apicomplexan parasites |
Autor: | Szajnman, S.H.; Galaka, T.; Li, Z.-H.; Li, C.; Howell, N.M.; Chao, M.N.; Striepen, B.; Muralidharan, V.; Moreno, S.N.J.; Rodriguez, J.B. |
Filiación: | Departamento de Química Orgánica, UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina Center for Tropical and Emerging Global Diseases, Department of Cellular Biology, University of Georgia, Athens, GA, United States
|
Palabras clave: | Bisphosphonates; Cryptosporidium parvum; Farnesyl diphosphate synthase; Isoprenoids; Plasmodium falciparum; Toxoplasma gondii; (2,2 diphosphonoethyl)(methyl)(hexyl)sulfonium tetrafluoroborate; (2,2 diphosphonoethyl)(methyl)(pentyl)sulfonium tetrafluoroborate; 1 [(n decylsulfonyl)ethyl] 1,1 biphosphonic acid; 1 [(n heptylsulfonyl)ethyl] 1,1 biphosphonic acid; 1 [(n hexylsulfonyl)ethyl] 1,1 biphosphonic acid; 1 [(n nonylsulfonyl)ethyl] 1,1 biphosphonic acid; 1 [(n octylsulfonyl)ethyl] 1,1 biphosphonic acid; atorvastatin; bisphosphonic acid derivative; geranyltransferase; hydroxymethylglutaryl coenzyme A reductase inhibitor; pamidronic acid; risedronic acid; sulfone; sulfur; unclassified drug; zoledronic acid; antiprotozoal agent; bisphosphonic acid derivative; enzyme inhibitor; sulfur; animal cell; animal experiment; animal model; Apicomplexa; Article; controlled study; cryptosporidiosis; Cryptosporidium parvum; EC50; enzyme activity; experimental model; IC50; in vitro study; in vivo study; malaria; mouse; nonhuman; Plasmodium falciparum; priority journal; selectivity index; tachyzoite; tissue culture; toxicity; Toxoplasma; toxoplasmosis; animal; antagonists and inhibitors; chemistry; dose response; drug effects; enzymology; growth, development and aging; human; inbred mouse strain; preclinical study; procedures; synthesis; toxoplasmosis; Animals; Antiprotozoal Agents; Chemistry Techniques, Synthetic; Cryptosporidium parvum; Diphosphonates; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Enzyme Inhibitors; Geranyltranstransferase; Humans; Mice, Inbred Strains; Plasmodium falciparum; Sulfur; Toxoplasma; Toxoplasmosis |
Año: | 2017
|
Volumen: | 61
|
Número: | 2
|
DOI: |
http://dx.doi.org/10.1128/AAC.01590-16 |
Título revista: | Antimicrobial Agents and Chemotherapy
|
Título revista abreviado: | Antimicrob. Agents Chemother.
|
ISSN: | 00664804
|
CODEN: | AMACC
|
CAS: | atorvastatin, 134523-00-5, 134523-03-8; geranyltransferase, 37277-79-5, 50812-36-7; pamidronic acid, 40391-99-9, 57248-88-1; risedronic acid, 105462-24-6, 122458-82-6; sulfone, 67015-63-8; sulfur, 13981-57-2, 7704-34-9; zoledronic acid, 118072-93-8, 131654-46-1, 165800-06-6, 165800-07-7; Antiprotozoal Agents; Diphosphonates; Enzyme Inhibitors; Geranyltranstransferase; Sulfur
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00664804_v61_n2_p_Szajnman |
Referencias:
- Luft, B.J., Hafner, R., Korzun, A.H., Leport, C., Antoniskis, D., Bosler, E.M., Bourland, D.D., III, Jacobson, J., Toxoplasmic encephalitis in patients with the acquired immunodeficiency syndrome (1993) N Engl J Med, 329, pp. 995-1000. , https://doi.org/10.1056/NEJM199309303291403
- Israelski, D.M., Remington, J.S., Toxoplasmosis in patients with cancer (1993) Clin Infect Dis, 17, pp. S423-S435. , https://doi.org/10.1093/clinids/17.Supplement_2.S423
- Wong, S.Y., Remington, J.S., Toxoplasmosis in pregnancy (1994) Clin Infect Dis, 18, pp. 853-861. , https://doi.org/10.1093/clinids/18.6.853
- Holland, G.N., Ocular toxoplasmosis: A global reassessment. Part II: Disease manifestations and management (2004) Am J Ophthalmol, 137, pp. 1-17
- Dyer, O., Company reneges on promise to cut price of toxoplasmosis drug (2015) BMJ, 351, p. h6472. , https://doi.org/10.1136/bmj.h6472
- Rodriguez, J.B., Szajnman, S.H., New antibacterials for the treatment of toxoplasmosis; A patent review (2012) Expert Opin Ther Pat, 22, pp. 311-333. , https://doi.org/10.1517/13543776.2012.668886
- Davies, A.P., Chalmers, R.M., Cryptosporidiosis (2009) BMJ, 339, p. b4168. , https://doi.org/10.1136/bmj.b4168
- (2014) World Malaria Report 2014, , WHO, World Health Organization, Geneva, Switzerland
- Docampo, R., Moreno, S.N., Bisphosphonates as chemotherapeutic agents against trypanosomatid and apicomplexan parasites (2001) Curr Drug Targets Infect Disord, 1, pp. 51-61. , https://doi.org/10.2174/1568005013343191
- Moreno, S.N., Li, Z.H., Anti-infectives targeting the isoprenoid pathway of Toxoplasma gondii (2008) Expert Opin Ther Targets, 12, pp. 253-263. , https://doi.org/10.1517/14728222.12.3.253
- Nair, S.C., Brooks, C.F., Goodman, C.D., Sturm, A., McFadden, G.I., Sundriyal, S., Anglin, J.L., Striepen, B., Apicoplast isoprenoid precursor synthesis and the molecular basis of fosmidomycin resistance in Toxoplasma gondii (2011) J Exp Med, 208, pp. 1547-1559. , https://doi.org/10.1084/jem.20110039
- Ling, Y., Li, Z.H., Miranda, K., Oldfield, E., Moreno, S.N., The farnesyldiphosphate/ geranylgeranyl-diphosphate synthase of Toxoplasma gondii is a bifunctional enzyme and a molecular target of bisphosphonates (2007) J Biol Chem, 282, pp. 30804-30816. , https://doi.org/10.1074/jbc.M703178200
- Li, Z.H., Cintron, R., Koon, N.A., Moreno, S.N., The N terminus and the chain-length determination domain play a role in the length of the isoprenoid product of the bifunctional Toxoplasma gondii farnesyl diphosphate synthase (2012) Biochemistry, 51, pp. 7533-7540. , https://doi.org/10.1021/bi3005335
- Li, Z.H., Ramakrishnan, S., Striepen, B., Moreno, S.N., Toxoplasma gondii relies on both host and parasite isoprenoids and can be rendered sensitive to atorvastatin (2013) PLoS Pathog, 9. , https://doi.org/10.1371/journal.ppat.1003665
- Rodan, G.A., Mechanisms of action of bisphosphonates (1998) Annu Rev Pharmacol Toxicol, 38, pp. 375-388. , https://doi.org/10.1146/annurev.pharmtox.38.1.375
- Russell, R.G., Bisphosphonates: The first 40 years (2011) Bone, 49, pp. 2-19. , https://doi.org/10.1016/j.bone.2011.04.022
- Reddy, R., Dietrich, E., Lafontaine, Y., Houghton, T.J., Belanger, O., Dubois, A., Arhin, F.F., Rafai Far, A., Bisphosphonated benzoxazinorifamycin prodrugs for the prevention and treatment of osteomyelitis (2008) Chem Med Chem, 3, pp. 1863-1868. , https://doi.org/10.1002/cmdc.200800255
- Miller, K., Erez, R., Segal, E., Shabat, D., Satchi-Fainaro, R., Targeting bone metastases with a bispecific anticancer and antiangiogenic polymeralendronate-taxane conjugate (2009) Angew Chem Int Ed Engl, 48, pp. 2949-2954. , https://doi.org/10.1002/anie.200805133
- Sanders, J.M., Ghosh, S., Chan, J.M., Meints, G., Wang, H., Raker, A.M., Song, Y., Oldfield, E., Quantitative structure-activity relationships for - T cell activation by bisphosphonates (2004) J Med Chem, 47, pp. 375-384. , https://doi.org/10.1021/jm0303709
- Linares, G.E., Ravaschino, E.L., Rodriguez, J.B., Progresses in the field of drug design to combat tropical protozoan parasitic diseases (2006) Curr Med Chem, 13, pp. 335-360. , https://doi.org/10.2174/092986706775476043
- Urbina, J.A., Moreno, B., Vierkotter, S., Oldfield, E., Payares, G., Sanoja, C., Bailey, B.N., Docampo, R., Trypanosoma cruzi contains major pyrophosphate stores, and its growth in vitro and in vivo is blocked by pyrophosphate analogs (1999) J Biol Chem, 274, pp. 33609-33615. , https://doi.org/10.1074/jbc.274.47.33609
- Martin, M.B., Grimley, J.S., Lewis, J.C., Heath, H.T., III, Bailey, B.N., Kendrick, H., Yardley, V., Oldfield, E., Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: A potential route to chemotherapy (2001) J Med Chem, 44, pp. 909-916. , https://doi.org/10.1021/jm0002578
- Martin, M.B., Arnold, W., Heath, H.T., III, Urbina, J.A., Oldfield, E., Nitrogen-containing bisphosphonates as carbocation transition state analogs for isoprenoid biosynthesis (1999) Biochem Biophys Res Commun, 263, pp. 754-758. , https://doi.org/10.1006/bbrc.1999.1404
- Szajnman, S.H., Bailey, B.N., Docampo, R., Rodriguez, J.B., Bisphosphonates derived from fatty acids are potent growth inhibitors of Trypanosoma cruzi (2001) Bioorg Med Chem Lett, 11, pp. 789-792. , https://doi.org/10.1016/S0960-894X(01)00057-9
- Szajnman, S.H., Montalvetti, A., Wang, Y., Docampo, R., Rodriguez, J.B., Bisphosphonates derived from fatty acids are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase (2003) Bioorg Med Chem Lett, 13, pp. 3231-3235. , https://doi.org/10.1016/S0960-894X(03)00663-2
- Szajnman, S.H., Ravaschino, E.L., Docampo, R., Rodriguez, J.B., Synthesis and biological evaluation of 1-amino-1,1-bisphosphonates derived from fatty acids against Trypanosoma cruzi targeting farnesyl pyrophosphate synthase (2005) Bioorg Med Chem Lett, 15, pp. 4685-4690. , https://doi.org/10.1016/j.bmcl.2005.07.060
- Ling, Y., Sahota, G., Odeh, S., Chan, J.M., Araujo, F.G., Moreno, S.N., Oldfield, E., Bisphosphonate inhibitors of Toxoplasma gondii growth: In vitro, QSAR, and in vivo investigations (2005) J Med Chem, 48, pp. 3130-3140. , https://doi.org/10.1021/jm040132t
- Sun, S., McKenna, C.E., Farnesyl pyrophosphate synthase modulators: A patent review (2006-2010) (2011) Expert Opin Ther Pat, 21, pp. 1433-1451. , https://doi.org/10.1517/13543776.2011.593511
- Recher, M., Barboza, A.P., Li, Z.H., Galizzi, M., Ferrer-Casal, M., Szajnman, S.H., Docampo, R., Rodriguez, J.B., Design, synthesis and biological evaluation of sulfur-containing 1,1-bisphosphonic acids as antiparasitic agents (2013) Eur J Med Chem, 60, pp. 431-440. , https://doi.org/10.1016/j.ejmech.2012.12.015
- Aripirala, S., Szajnman, S.H., Jakoncic, J., Rodriguez, J.B., Docampo, R., Gabelli, S.B., Amzel, L.M., Design, synthesis, calorimetry, and crystallographic analysis of 2-alkylaminoethyl-1,1-bisphosphonates as inhibitors of Trypanosoma cruzi farnesyl diphosphate synthase (2012) J Med Chem, 55, pp. 6445-6454. , https://doi.org/10.1021/jm300425y
- Urbina, J.A., Concepcion, J.L., Montalvetti, A., Rodriguez, J.B., Docampo, R., Mechanism of action of 4-phenoxyphenoxyethyl thiocyanate (WC-9) against Trypanosoma cruzi, the causative agent of Chagas' disease (2003) Antimicrob Agents Chemother, 47, pp. 2047-2050. , https://doi.org/10.1128/AAC.47.6.2047-2050.2003
- Elicio, P.D., Chao, M.N., Galizzi, M., Li, C., Szajnman, S.H., Docampo, R., Moreno, S.N., Rodriguez, J.B., Design, synthesis and biological evaluation of WC-9 analogs as antiparasitic agents (2013) Eur J Med Chem, 69, pp. 480-489. , https://doi.org/10.1016/j.ejmech.2013.09.009
- Shang, N., Li, Q., Ko, T.P., Chan, H.C., Li, J., Zheng, Y., Huang, C.H., Guo, R.T., Squalene synthase as a target for Chagas disease therapeutics (2014) PLoS Pathog, 10. , https://doi.org/10.1371/journal.ppat.1004114
- Chao, M.N., Matiuzzi, C.E., Storey, M., Li, C., Szajnman, S.H., Docampo, R., Moreno, S.N., Rodriguez, J.B., Aryloxyethyl thiocyanates are potent growth inhibitors of Trypanosoma cruzi and Toxoplasma gondii (2015) ChemMedChem, 10, pp. 1094-1108. , https://doi.org/10.1002/cmdc.201500100
- Artz, J.D., Wernimont, A.K., Dunford, J.E., Schapira, M., Dong, A., Zhao, Y., Lew, J., Hui, R., Molecular characterization of a novel geranylgeranyl pyrophosphate synthase from Plasmodium parasites (2011) J Biol Chem, 286, pp. 3315-3322. , https://doi.org/10.1074/jbc.M109.027235
- Artz, J.D., Dunford, J.E., Arrowood, M.J., Dong, A., Chruszcz, M., Kavanagh, K.L., Minor, W., Hui, R., Targeting a uniquely nonspecific prenyl synthase with bisphosphonates to combat cryptosporidiosis (2008) Chem Biol, 15, pp. 1296-1306. , https://doi.org/10.1016/j.chembiol.2008.10.017
- Yardley, V.K.A., Martin, M.B., Slifer, T.R., Araujo, F.G., Moreno, S.N., Docampo, R., Croft, S.L., Oldfield, E., In vivo activities of farnesyl pyrophosphate synthase inhibitors against Leishmania donovani and Toxoplasma gondii (2002) Antimicrob Agents Chemother, 46, pp. 929-931. , https://doi.org/10.1128/AAC.46.3.929-931.2002
- Aversa, M.C., Barattucci, A., Bilardo, M.C., Bonaccorsi, P., Giannetto, P., Rollin, P., Tatibouet, A., Sulfenic acids in the carbohydrate field (2005) An Example of Straightforward Access to Novel Multivalent Thiosaccharides. J Org Chem, 70, pp. 7389-7396
- Zhang, Y., Cao, R., Yin, F., Hudock, M.P., Guo, R.T., Krysiak, K., Mukherjee, S., Oldfield, E., Lipophilic bisphosphonates as dual farnesyl/geranylgeranyl diphosphate synthase inhibitors: An X-ray and NMR investigation (2009) J Am Chem Soc, 131, pp. 5153-5162. , https://doi.org/10.1021/ja808285e
- Van Dooren, G.G., Tomova, C., Agrawal, S., Humbel, B.M., Striepen, B., Toxoplasma gondii Tic20 is essential for apicoplast protein import (2008) Proc Natl Acad Sci U S A, 105, pp. 13574-13579. , https://doi.org/10.1073/pnas.0803862105
- Berenbaum, M.C., A method for testing for synergy with any number of agents (1978) J Infect Dis, 137, pp. 122-130. , https://doi.org/10.1093/infdis/137.2.122
- Muralidharan, V., Oksman, A., Pal, P., Lindquist, S., Goldberg, D.E., Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers (2012) Nat Commun, 3, p. 1310. , https://doi.org/10.1038/ncomms2306
- Vinayak, S., Pawlowic, M.C., Sateriale, A., Brooks, C.F., Studstill, C.J., Bar-Peled, Y., Cipriano, M.J., Striepen, B., Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum (2015) Nature, 523, pp. 477-480. , https://doi.org/10.1038/nature14651
- Gut, J., Nelson, R.G., Cryptosporidium parvum: Synchronized excystation in vitro and evaluation of sporozoite infectivity with a new lectinbased assay (1999) J Eukaryot Microbiol, 46, pp. 56S-57S
Citas:
---------- APA ----------
Szajnman, S.H., Galaka, T., Li, Z.-H., Li, C., Howell, N.M., Chao, M.N., Striepen, B.,..., Rodriguez, J.B.
(2017)
. In Vitro and in Vivo activities of sulfur-containing linear bisphosphonates against apicomplexan parasites. Antimicrobial Agents and Chemotherapy, 61(2).
http://dx.doi.org/10.1128/AAC.01590-16---------- CHICAGO ----------
Szajnman, S.H., Galaka, T., Li, Z.-H., Li, C., Howell, N.M., Chao, M.N., et al.
"In Vitro and in Vivo activities of sulfur-containing linear bisphosphonates against apicomplexan parasites"
. Antimicrobial Agents and Chemotherapy 61, no. 2
(2017).
http://dx.doi.org/10.1128/AAC.01590-16---------- MLA ----------
Szajnman, S.H., Galaka, T., Li, Z.-H., Li, C., Howell, N.M., Chao, M.N., et al.
"In Vitro and in Vivo activities of sulfur-containing linear bisphosphonates against apicomplexan parasites"
. Antimicrobial Agents and Chemotherapy, vol. 61, no. 2, 2017.
http://dx.doi.org/10.1128/AAC.01590-16---------- VANCOUVER ----------
Szajnman, S.H., Galaka, T., Li, Z.-H., Li, C., Howell, N.M., Chao, M.N., et al. In Vitro and in Vivo activities of sulfur-containing linear bisphosphonates against apicomplexan parasites. Antimicrob. Agents Chemother. 2017;61(2).
http://dx.doi.org/10.1128/AAC.01590-16